Software Desi
Patterns

The Ultimate Guide
SUFYAN BIN UZAYR

@ CRC Press
Taylor & Francis Group

Software Design Patterns

Software Design Patterns are reusable solutions to software development difficul-
ties. However, a Software Design Pattern is not code; rather, it is a guide or para-
digm that helps software engineers to construct products that follow best practices.
A Design Pattern is more of a template to tackle the topic at hand than a library
or framework, which can be added and utilized right away. Object-oriented pro-
gramming (OOP) is supported by Design Patterns, which are based on the ideas of
objects (instances of a class; data with unique attributes) and classes (user-defined
types of data). Design Patterns are blueprints for resolving typical software engineer-
ing issues. They provide reproducible solutions to some of the most prevalent dif-
ficulties you'll encounter. That said, Design Patterns aren’t a complete solution, nor
are they code, classes, or libraries that you may use in your project. They are a type
of problem-solving solution. Each job will be approached in a slightly different way.

Why Should You Learn Software Design Patterns?

As a programmer, you can use Software Design Patterns to help you build more re-
liable structures. Design Patterns give you the skills to create smart and interactive
applications or software with simple and easy problem-solving methods; they also
allow you to create the greatest user-friendly apps and change them easily to meet
the latest requirements. Design Patterns are interesting to deal with since such
knowledge enables flexible coding patterns and techniques of structure, reusable
codes, loosely written codes, classes, patterns, and so on.

This book contains:
o A step-by-step approach to problem solving and skill development
o A quick run-through of the basic concepts, in the form of a “Crash Course”
o Advanced, hands-on core concepts, with a focus on real-world problems
o Industry level coding paradigm with practice-oriented explanations

o Special emphasis on writing clean and optimized code, with additional
chapters focused on coding methodology

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

https://taylorandfrancis.com

Software Design Patterns
The Ultimate Guide

Sufyan bin Uzayr

CRC Press
Taylor & Francis Group
Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

First edition published 2023
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC
© 2023 Sufyan bin Uzayr

Reasonable efforts have been made to publish reliable data and information, but the author and
publisher cannot assume responsibility for the validity of all materials or the consequences of their use.
The authors and publishers have attempted to trace the copyright holders of all material reproduced in
this publication and apologize to copyright holders if permission to publish in this form has not been
obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com
or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. For works that are not available on CCC please contact mpkbookspermissions@tandf.
co.uk

Trademark Notice: Product or corporate names may be trademarks or registered trademarks and are
used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Names: Bin Uzayr, Sufyan, author.

Title: Software Design Patterns : the ultimate guide / Sufyan bin Uzayr.
Description: First edition. | Boca Raton : CRC Press, 2023. | Includes
bibliographical references and index.

Identifiers: LCCN 2022025677 (print) | LCCN 2022025678 (ebook) | ISBN
9781032311777 (hbk) | ISBN 9781032311760 (pbk) | ISBN 9781003308461 (ebk)
Subjects: LCSH: Software patterns.

Classification: LCC QA76.76.P37 B56 2023 (print) | LCC QA76.76.P37 (ebook) |
DDC 005.13/267--dc23/eng/20220804

LC record available at https://Iccn.loc.gov/2022025677

LC ebook record available at https://lccn.loc.gov/2022025678

ISBN: 9781032311777 (hbk)
ISBN: 9781032311760 (pbk)
ISBN: 9781003308461 (ebk)

DOI: 10.1201/9781003308461

Typeset in Minion
by KnowledgeWorks Global Ltd.

https://www.copyright.com
https://lccn.loc.gov/2022025677
https://lccn.loc.gov/2022025678
https://doi.org/10.1201/9781003308461
mailto:mpkbookspermissions@tandf.co.uk
mailto:mpkbookspermissions@tandf.co.uk

Contents

Acknowledgments, xv

About the Author, xvii

CHapTER T w Crash Course in Software Design Patterns

WHAT IS THE PURPOSE OF DESIGN PATTERNS?
WHY SHOULD WE STUDY DESIGN PATTERNS?
DESIGN PATTERN CONFIGURATION
Design Pattern
WHAT IS THE SIGNIFICANCE OF THE DESIGN PATTERN?
TYPES OF DESIGN PATTERNS
Creational
Use Case of Creational Design Patterns
Structural
Use Case of Structural Design Patterns
Behavioral
Use Case of Behavioral Design Patterns
WHAT EXACTLY IS THE GANG OF FOUR (GOF)?
USAGE OF DESIGN PATTERNS
Developers’ Common Platform
Guidelines for Best Practices
IMPORTANCE OF LEARNING DESIGN PATTERNS
TYPES OF DESIGN PATTERNS
DESIGN PATTERNS AND THEIR APPLICATIONS
PATTERNS OF CREATIONAL DESIGN

<|©©oooo\1\1\l\l\10\oxoxmmmm4>.l>.4>w—\

vi m Contents

PATTERNS OF STRUCTURAL DESIGN
PATTERNS OF BEHAVIORAL DESIGN
CRITICISM
Focusing on the Incorrect Issue
No Official Foundations
May Result in Ineflicient Solutions
It is Not Notably Different from Other Abstractions
WHAT IS THE PURPOSE OF USING DESIGN PATTERNS?

DESIGN PATTERNS” ADVANTAGES IN SOFTWARE
ENGINEERING

SOFTWARE DESIGN PATTERN CRITIQUES
BEST SOFTWARE DESIGN PATTERNS
PATTERNS OF POPULAR SOFTWARE ARCHITECTURE
LIMITATIONS OF DESIGN PATTERNS
PROS OF DESIGN PATTERNS
DESIGN PATTERN CLASSIFICATION
Creational Design Patterns
Classification of Creational Design Patterns
Structural Design Patterns
Classification of Structural Design Patterns
Behavioral Design Patterns
Classification of Behavioral Design Patterns
Creational Design Patterns
Structural Design Patterns
Behavioral Design Patterns
DESIGN PATTERNS IN JAVA
Design Patterns in Software Development
Object Orientated Programming
Encapsulation
Abstraction
Polymorphisms

Inheritance

10
11
12
12
12
13
13

14
14
14

18
18
19
19
19
20
20
20
20
21
21
21
21
21
22
22
22
23
23

Contents ® vii

Delegation 23
Composition 23
Aggregation 23
Contract Design 24
Cohesion 24
Principle of Least Knowledge 24
The Open-Closed Principle 24
Composition vs. Inheritance in Object-Oriented Design Patterns 25
Inheritance 25
Composition 26
Favoring Composition over Inheritance in Java (with Examples) 27
Inheritance 28
Composition 29
Composition over Inheritance 30

IS INHERITANCE EXTINCT? A CLOSER LOOK AT THE
DECORATOR PATTERN 30
Exploding Class Hierarchy 31
To the Rescue Comes the Decorator Pattern 33
Decorators Queue 34
Testability 35
Other Advantages 35
Drawbacks 36
Decorator Pattern Has Native Support 37
Abstract Decorator 38
When Should We Use Inheritance? 39
KEY POINTS 40
CHAPTER 2 = Factory Pattern 41
FACTORY METHOD 41
UML FOR FACTORY METHOD 42
PATTERNS FOR FACTORY PATTERN DESIGN 42
Problem 42
Solution 44

viii m Contents

ADVANTAGES OF USING THE FACTORY PATTERN 46
DRAWBACKS OF USING THE FACTORY PATTERN METHOD 46
APPLICABILITY 46
USES OF THE FACTORY DESIGN PATTERN 46
WHEN SHOULD WE UTILIZE FACTORY PATTERN METHODS? 47
Complex Logical Code Is Being Replaced 47
Bringing Together Related Functions under a Single Interface =~ 47
Multiple Implementations of the Same Functionality Are
Supported 47
Integrating External Series That Are Linked 47
PROBLEMS WE CONFRONT IN THE ABSENCE OF THE
FACTORY METHOD 47
DISCUSSION 48
GENERAL GUIDELINES 48
Examples of Real-World Applications of the Factory Pattern
Method Design in Java 49
Calculate An Electricity Bill: A Real-World Application of the
Factory Method in Java 49
A Real-World Example of the Factory Design Pattern in C# 51
CHaPTER 3 = Observer Pattern 59
PARTICIPANTS IN DESIGN 60
A PROBLEM 60
SOLUTION BASED ON THE OBSERVER PATTERN 60
CLASS DIAGRAM 63
ADVANTAGES 64
DISADVANTAGES 64
APPLICABILITY 64
USAGE 64
OBSERVER PATTERN’S PURPOSE 65
INTENT 65
PROBLEM 65
DISCUSSION 65

Contents m ix

EXAMPLE 66
CHECKLIST 66
RULES OF THUMB 66
Here’s a Real-World Example of an Observer Pattern in Java 67
IMPLEMENT THE OBSERVER PATTERN 67
Another Example 69
IObservable and IObserver (C#) Observer 71
USAGE 73
CHAPTER 4 = Template Method Pattern 75
THE FACTORY METHOD VS. THE TEMPLATE METHOD 76
THE ABC LIBRARY 77
WHEN SHOULD THE TEMPLATE METHOD PATTERN
BE USED? 77
USING PYTHON TO IMPLEMENT THE TEMPLATE
METHOD DESIGN PATTERN 78
ADVANTAGES 81
DISADVANTAGES 82
APPLICABILITY 82
USAGE 82
IMPORTANT POINTS 82
TEMPLATE METHOD PATTERN IMPLEMENTATION IN JAVA 83
TEMPLATE METHOD IN C# 87
Participants 87
C# Structural Code 87
Real-World C# Code 88
CHAPTER 5 = Singleton Pattern 93
MOTIVATION 94
REAL-WORLD EXAMPLE 94
IMPLEMENTATION 95

Method 1: Design Pattern of Monostate/Borg Singleton 95

x m Contents

CLASSIC IMPLEMENTATION OF SINGLETON DESIGN

PATTERN 97
CLASS DIAGRAM 98
BENEFITS OF USING THE SINGLETON PATTERN 99
DISADVANTAGES OF EMPLOYING THE SINGLETON
PATTERN 99
APPLICABILITY 99
USAGE OF SINGLETON DESIGN PATTERN 99
How to Implement the Singleton Design Pattern in Java 100
UNDERSTANDING EARLY SINGLETON PATTERN
INSTANTIATION 100
UNDERSTANDING THE LAZY SINGLETON
INSTANTIATION PATTERN 100
IMPORTANCE OF SERIALIZATION IN THE SINGLETON
PATTERN 101
UNDERSTANDING A REAL-WORLD EXAMPLE OF THE
SINGLETON PATTERN 102
ASSUMPTION 102
C# Singleton Pattern 108
Participants 108
C# Structural Code 108
Real-World C# Code 110
CHAPTER 6 = Strategy Pattern 113
INTRODUCTION 113
STRATEGY 114
USAGE 114
UML DIAGRAMS 115
IMPLEMENTATION 116
EXAMPLE 118
BENEFITS 119
DOWNSIDES 120
APPLICABILITY 120

Example of a Real-Time Strategy Pattern — Payment in Java 120

Contents m xi

STRATEGY PATTERN IMPLEMENTATION IN JAVA 120
C# Strategy Pattern 123
Participants 123

C# Structural Code 123
Real-World C# Code 125
CHAPTER 7 = Proxy Pattern 129
WHY WOULD WE USE IT? 131
BETTER TESTABILITY 133
INTERFACE USING PROXY PATTERN 133
ANOTHER USEFUL EXAMPLE 135
HOW SHOULD THE PROXY PATTERN BE IMPLEMENTED? 139
ADVANTAGES 140
DISADVANTAGES 140
APPLICABILITY 141
IMPLEMENTATION 142
C# Proxy Pattern 143
Participants 143

C# Structural Code 144
Real-World C# Code 146
CHAPTER 8 » Bridge Pattern 149
BRIDGE DESIGN PATTERN ELEMENTS 149

THE INSPIRATION FOR THE BRIDGE DESIGN PATTERN 150
USING PYTHON TO IMPLEMENT THE BRIDGE DESIGN

PATTERN 151
A PROBLEM 154
SOLUTION USING BRIDGE PATTERN 156
UML DIAGRAM OF BRIDGE PATTERN 158
REAL-WORLD BRIDGE DESIGN PATTERN 158
ADVANTAGES 158
DISADVANTAGES 159

APPLICABILITY 159

xii m Contents

USAGE OF BRIDGE PATTERN 159
Using the Bridge Pattern in Java 160
Bridge Pattern in C# 163

Participants 163

C# Structural Code 163
Real-World C# Code 165
CHAPTER 9 = Adapter and Facade Patterns 171

ADAPTER PATTERN 171

USING THE ADAPTER PATTERN TO SOLVE A PROBLEM 172

ADAPTER PATTERN SOLUTIONS 173

CLASS DIAGRAM 175

ADVANTAGES 175

DISADVANTAGES 175

APPLICABILITY 176

ADAPTER PATTERN USAGE 176
An Example of the Adapter Pattern in Java 176
Adapter Pattern in C# 178

Participants 178
C# Structural Code 179
Real-World C# Code 180

FACADE PATTERN 183

A PROBLEM 184

SOLUTION BASED ON THE FACADE PATTERN 185

CLASS DIAGRAM FOR THE FACADE METHOD 186

ADVANTAGES 186

DISADVANTAGES 186

APPLICABILITY 187

FACADE PATTERN USAGE 187

Implementation in Java 187

Contents m xiii

Facade Pattern in C# 190

Participants 190
C# Structural Code 190
Real-World C# Code 193

APPRAISAL, 197
BIBLIOGRAPHY, 419

INDEX, 429

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

https://taylorandfrancis.com

Acknowledgments

There are many people who deserve to be on this page, for this book would
not have come into existence without their support. That said, some names
deserve a special mention, and I am genuinely grateful to:

» My parents, for everything they have done for me.

« My siblings, for helping with things back home.

o The Parakozm team, especially Divya Sachdeva, Jaskiran Kaur, and
Vartika, for offering great amounts of help and assistance during the
book-writing process.

» The CRC team, especially Sean Connelly and Danielle Zarfati, for
ensuring that the book’s content, layout, formatting, and everything
else remain perfect throughout.

« Reviewers of this book, for going through the manuscript and pro-
viding their insight and feedback.

« Typesetters, cover designers, printers, and all related roles, for their
part in the development of this book.

o All the folks associated with Zeba Academy, either directly or indi-
rectly, for their help and support.

+ The programming community in general, and the web development
community in particular, for all their hard work and efforts.

Sufyan bin Uzayr

Xv

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

https://taylorandfrancis.com

About the Author

Sufyan bin Uzayr is a writer, coder, and entrepreneur with over a decade
of experience in the industry. He has authored several books in the past, per-
taining to a diverse range of topics, ranging from History to Computers/IT.

Sufyan is the Director of Parakozm, a multinational IT company spe-
cializing in EdTech solutions. He also runs Zeba Academy, an online
learning and teaching vertical with a focus on STEM fields.

Sufyan specializes in a wide variety of technologies, such as JavaScript,
Dart, WordPress, Drupal, Linux, and Python. He holds multiple degrees,
including ones in Management, IT, Literature, and Political Science.

Sufyan is a digital nomad, dividing his time between four countries. He
has lived and taught in universities and educational institutions around
the globe. Sufyan takes a keen interest in technology, politics, literature,
history, and sports, and in his spare time, he enjoys teaching coding and
English to young students.

Learn more at sufyanism.com.

Xvii

http://sufyanism.com

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

https://taylorandfrancis.com

CHAPTER 1

Crash Course In
Software Design
Patterns

IN THIS CHAPTER

> What are Software Design Patterns?
> Major concepts
> Advantages and disadvantages

> Additional info

Design Patterns represent some of the most acceptable practices experi-
enced object-oriented software engineers utilize. In object-oriented sys-
tems, a Design Pattern methodically names, motivates, and describes a
general design that addresses a recurring design challenge. It explains the
problem, the remedy, when to use it, and the repercussions. It also includes
tips and examples for implementation.

A Design Pattern is a broad, reusable solution to common software
design challenges. Typically, the pattern depicts relationships and inter-
actions between classes or objects. The goal is to accelerate the develop-
ment process by providing tried-and-true development/design paradigms.
Design Patterns are strategies for solving a common problem independent
of programming language. A Design Pattern represents an idea rather than

DOI: 10.1201/9781003308461-1 1

https://doi.org/10.1201/9781003308461-1

2 m Software Design Patterns: The Ultimate Guide

a specific implementation. We can make our code more flexible, reusable,
and maintainable by employing Design Patterns.

It is not always necessary to use Design Patterns in our project. Design
Patterns are not intended for use in project development. Design Patterns
are intended to solve common problems. Whenever there is a need, we must
implement a suitable pattern to avoid future problems. To determine which
pattern to use, simply try to understand the Design Patterns and their func-
tions. In this manner only will we be able to choose the greatest one.

A Software Design Pattern is a generic, reusable solution to a typically
occurring problem in software design within a specific environment.

o It is not a finalized design that can simply translate into source or
machine code. It is a description or template for resolving a problem
that may use in a variety of circumstances.

» Design Patterns are best practices that have been established that
a programmer may apply to overcome common challenges while
developing an application or system.

Design Patterns provide answers to common issues, allowing code to be
more manageable, extendable, and loosely connected.

Developers have given solutions that handle a specific sort of problem a
name. And this is how it all began.

The more one understands them, the easier it is to solve all of our difficulties.

Goal: The goal is to understand the purpose and application of each Design
Pattern so that we can select and implement the appropriate pattern as needed.

Example: For example, in many real-world scenarios, we only want to
make one instance of a class. For example, a country can only have one
active president at any time. A Singleton pattern is the name given to this
design. Other software examples include a single database connection
shared by several objects, as establishing a separate database connection
for each item is expensive. Similarly, instead of developing many man-
agers, an application might have a single configuration manager or error
manager that handles all problems.

WHAT IS THE PURPOSE OF DESIGN PATTERNS?

As Software Developers, we frequently assess our code based on criteria
such as how clean, expressive, has a small memory footprint and is quick.
However, the most critical consideration, which we sometimes overlook,
is that we should be able to adjust anything later simply. What we chose

Crash Course in Software Design Patterns m 3

now might not be applicable tomorrow. And our code should be adaptable
enough that changes are not prohibitively expensive. As a result, Design
Patterns are best practices for covering such properties. The essence of
Design Patterns, in my opinion, consists of the following six rules:

1. They are tried-and-true solutions: Because developers often use
Design Patterns, we may be confident that they function. Not only
that, but we can also guarantee that they were altered several times
and that optimizations were most likely performed.

2. They are simple to re-use: Design Patterns describe a reusable solu-
tion that may modify to solve various specific situations because they
aren’t tied to a specific situation.

Consider the Iterator Design Pattern, reusable across STL despite
container and algorithm changes. Iterators act as a glue between the
container and the algorithm.

3. They have a strong personalities: Design Patterns may elegantly
describe a considerable solution. The Visitor pattern, for example, is
used to perform a new operation on a range/group of classes. As a
result, the standard library adopted this design with a single function,
namely the std::visit algorithm. The same is true for boost::flyweight>.

4. They facilitate communication: Developers’ knowledge about
Design Patterns can communicate more readily about potential solu-
tions to a given challenge.

If we're part of a team of developers, agree on Design Patterns with
our colleagues since they can help us solve problems more effectively.
We should also follow similar practices for software maintenance, as
it makes maintenance operations faster and more efficient.

5. They eliminate the need for code refactoring: When an application
is created with Design Patterns in mind, we may not need to rewrite
the code later since applying the relevant Design Pattern to a specific
problem is already an optimum solution.

If such solutions are later updated, they may be applied effortlessly
by any excellent software developer without causing any complications.

6. They reduce the codebase’s size: Design Patterns use less code than
alternative solutions since they are generally beautiful and optimal.
This isn’t always the case, because many developers add extra code to
improve understanding.

4 m Software Design Patterns: The Ultimate Guide

WHY SHOULD WE STUDY DESIGN PATTERNS?

Object-Oriented Design is defined as merging data and its operations into

a context-bound entity (i.e., class/struct). This is also true while developing
a unique thing.

However, when creating an entire program, we must remember that
Creational Design Patterns: How will those objects be instantiated/created?

« Patterns of Structural Design: How do those items interact with
one another to produce a larger entity? This should be scalable in the
future.

« Patterns of Behavioral Design: We must also consider communica-
tion between those things that can quickly foresee future changes
and have fewer adverse effects.

Do we see where this is going? Maintainability, scalability, expressiveness,
and stability must be considered while thinking about objects. So, in a
word, this is a coding mindset. And we’re pretty sure we don’t have this
attitude and thought process if we come from a C background.

DESIGN PATTERN CONFIGURATION

The fundamental structure of the Design Pattern documentation is
depicted in the following figure. It focuses on what technology we are

employing to address challenges and how we do so.

Design Pattern

Pattern Name

Intent/ Motive

Applicability

Participants and
Consequences

Configuration of Design Pattern.

Crash Course in Software Design Patterns m 5

« Pattern Name: This is used to define the pattern concisely and
effectively.

« Intent/Motive: It specifies the pattern’s objective or what it does.

« Applicability: It specifies all of the conceivable locations the pattern
may use.

« Participants and Repercussions: It comprises classes and objects
utilized in the Design Pattern and a list of the pattern’s consequences.

WHAT IS THE SIGNIFICANCE OF THE DESIGN PATTERN?

Design Patterns are used to solve reoccurring design challenges. In a nut-
shell, Design Patterns do not solve the problem on their own; instead, they
assist us in addressing the problem.

Software development Design Patterns began as best practices used
repeatedly to similar challenges found in various situations.

Design Patterns have been used to overcome the following frequent
problems:

« How to correctly initialize an object.

o How to make two items interact with one other.

TYPES OF DESIGN PATTERNS

Design Patterns are divided into the following three categories.

Creational

Class instantiation or object generation is the focus of these Design Patterns.
Class-creational patterns and object-creational patterns are two subsets of
these patterns. While class-creation patterns make good use of inheritance
in the instantiation process, object-creation patterns use delegation.

Factory Method, Abstract Factory, Builder, Singleton, Object Pool, and
Prototype are creational Design Patterns.

Use Case of Creational Design Patterns

1. Assume a programmer wants to create a simple DBConnection class
to connect to a database and needs to use the database from code in
numerous places. The developer will typically create an instance of
the DBConnection class and use it to perform database operations
wherever they are needed. As each example of the DBConnection

6 m Software Design Patterns: The Ultimate Guide

class has a different connection to the database, numerous con-
nections to the database are created. To deal with it, we make the
DBConnection class a singleton class, which means that only one
instance of DBConnection is generated, and only one connection is
made. We can control load balance, redundant connections, and so
on since we can manage DBConnection from a single instance.

2. We can use the Factory design if we wish to create several instances
of the same type while maintaining loose coupling. A factory-Design
Pattern-implemented class acts as a link between numerous classes -
for instance, the use of various database servers such as SQL Server
and Oracle. We should use the Factory Design Pattern to achieve
loose coupling and create a similar kind of object if we are developing
an application with a SQL Server database as the back end. Still, if we
need to change the database to Oracle, we will need to modify all of
our code. Hence, as Factory Design Patterns maintain loose coupling
and easy implementation, we should use the factory layout design to
achieve loose coupling and create a similar kind of object.

Structural

These Design Patterns deal with grouping distinct classes and objects
together to create larger structures and add new functionality.

Adapter, Bridge, Composite, Decorator, Facade, Flyweight, Private
Class Data, and Proxy are structural Design Patterns.

Use Case of Structural Design Patterns

1. An Adapter Design Pattern is used when two interfaces are incom-
patible and want to establish a relationship between them using
an adapter. The adapter pattern transforms a class’s interface into
another interface or class that the client expects, allowing classes
that would otherwise be incompatible with operating together. We
can use the adapter pattern in these types of incompatible instances.

Behavioral

Identifying and discovering shared communication patterns between
items are all about behavioral patterns.

Chain of Responsibility, Command, Interpreter, Iterator, Mediator,
Memento, Null Object, Observer, State, Scheme, Template method, and
Visitor are behavioral patterns.

Crash Course in Software Design Patterns m 7

Use Case of Behavioral Design Patterns

1. In an operation, the template pattern defines the skeleton of an algo-
rithm by deferring some stages to subclasses. Subclasses can use the
template technique to rewrite specific phases of an algorithm without
affecting the algorithm’s structure. For example, we might want the
module’s behavior to be extensible in our project. We can make it
act in new and different ways when the application’s requirements
evolve or satisfy new applications’ demands. However, no one is per-
mitted to edit the source code, which means that we can add but not
change the structure in circumstances when a developer is permitted
to apply the template Design Pattern.

WHAT EXACTLY IS THE GANG OF FOUR (GOF)?

The book Design Patterns - Elements of Reusable Object-Oriented
Software, written by four writers, Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides, was published in 1994 and introduced the
first concept of Design Patterns in software development.

Gang of Four is the collective name for these four authors (GOF).
According to these authors, Design Patterns are essentially based on the
following object-oriented design principles:

« Not an implementation, but a program to an interface.
 Object composition should take precedence over the inheritance.

USAGE OF DESIGN PATTERNS

Patterns have two main applications in software development.

Developers’ Common Platform

Design Patterns define a common language and are tailored to a given con-
text. A singleton Design Pattern, for example, denotes the use of a single
object; thus, all developers who are familiar with single Design Patterns
will use single objects, and they will be able to detect whether a program is
following a singleton pattern.

Guidelines for Best Practices

Design Patterns have evolved to provide the best answers to specific problems
encountered during software development. Learning these patterns makes it
easier and faster for inexperienced developers to learn software design.

8 m Software Design Patterns: The Ultimate Guide

IMPORTANCE OF LEARNING DESIGN PATTERNS

Many software engineers could work for many years without understand-
ing any single pattern. It can also happen; we can be applying a pattern
without even knowing it. So, the question is, why should we examine the
Design Pattern? Consider the following arguments, which highlight the
importance of Design Patterns in development.

Design Patterns contain the predetermined collection of tried and veri-
fied solutions to a common problem faced when designing software. If we
know about the Design Pattern, we can implement the solution without
wasting time. It also shows us how to tackle the problem using the idea of
object-oriented design.

Design Pattern also promotes a common understanding between the
developer and their coworkers. Suppose there is an issue in the code, and
we may say, “Use Singleton for that,” and everyone can understand if they
understand the Design Pattern and its name.

Design Patterns are also crucial for the learning purpose since they intro-
duce the common problem we may have neglected. They also allow con-
templating that area that may not have received the hands-on experience.

TYPES OF DESIGN PATTERNS

According to the Design Patterns — Elements of Reusable Object-Oriented
Software reference book, 23 Design Patterns can be grouped into cre-
ational, structural, and behavioral patterns. We’ll also go over J2EE Design
Patterns, which are different.

S. No. Pattern & Description

1 Patterns of Creation
Rather of explicitly instantiating objects with the new operator, these Design
Patterns provide a way for building things without hiding the creation logic.
This gives the software greater flexibility in identifying which items are
necessary for a given use case.
2 Structural Patterns
Structural Patterns are the patterns that make up the structure of a building.
These Design Patterns deal with the composition of classes and objects.
Inheritance is a concept used to create interfaces and define how to combine
items to create new functions.
3 Patterns of Behavior
These Design Patterns are mostly concerned with object communication.
4 Patterns for J2EE
These Design Patterns are concerned with the presentation tier in particular.
Sun Java Centre has detected these tendencies.

Crash Course in Software Design Patterns m 9

DESIGN PATTERNS AND THEIR APPLICATIONS

By providing tried-and-true development paradigms, Design Patterns can
assist to speed the development process. Considering concerns that may
not become apparent until later in the implementation process is critical
for good software design. Reusing Design Patterns helps to prevent minor
issues from becoming significant ones and enhances code readability for
experienced coders and architects.

Most people understand how to apply certain software design concepts
to specific issues. These methods are challenging to adapt to a wider vari-
ety of challenges. Design Patterns give generic answers that are defined in
a way that does not necessitate specifics related to a specific situation.

Furthermore, patterns enable developers to talk about software inter-
actions using well-known, well-understood terms. Over time, common
Design Patterns may be enhanced, making them more resilient than ad
hoc ideas.

PATTERNS OF CREATIONAL DESIGN

Class instantiation is central to several Design Patterns. This pattern is
separated into two types: class-creation patterns and object-creation pat-
terns. While class-creation patterns employ inheritance in the instantia-
tion process, object-creation patterns effectively use delegation.

Object
Pool

Factory

Singleton Method

\o
s

Prototype v.v

Abstract

Factory

Patterns of creational design.

10 = Software Design Patterns: The Ultimate Guide

» Abstract Factory: Creates an instance of numerous families of
classes using an abstract factory.

o Builder: Distinguishes the building of a thing from its representation.

+ Factory Method: This method creates instances of multiple derived
classes.

+ Object Pool: Recycle objects that are no longer used to save money
on resource acquisition and release.

+ Prototype: An instance that has been fully initialized and is ready to
be duplicated or cloned.

« Singleton: It is a class that can only have one instance.

PATTERNS OF STRUCTURAL DESIGN

The composition of Classes and Objects is essential to these design princi-
ples. Inheritance is used to construct interfaces in structural class-creation
patterns. Structural object-patterns outline how objects may combine to
provide new functionality.

Adapter

Patterns of creational design.

+ Adapter: Interfaces from several classes must match.

« Bridge: Separates the interface of an object from its implementation.

Crash Course in Software Design Patterns = 11

« Composite: A basic and composite object tree structure.
» Decorator: Dynamically assign responsibilities to objects
« Facade: A single class represents a whole subsystem.
 Flyweight: A fine-grained instance for distributing.

« Private Class Data: Restricts accessor/mutator access.

 Proxy: An object that is a representation of another item.

PATTERNS OF BEHAVIORAL DESIGN

These Design Patterns are mostly about Class object communication.
Behavioral patterns are concerned largely with the transfer of objects.

Chain
of
respons
ibility

‘

Observer

Patterns of creational design.

« Chain of responsibility: A chain of responsibility is transmitting a
request between objects in a chain.

« Command: As an object, encapsulate a command request.

12 m Software Design Patterns: The Ultimate Guide

+ Interpreter: A method of incorporating linguistic features into a
program.

o Iterator: A method for accessing the items of a collection in a sequen-
tial manner.

» Mediator: A class that facilitates communication between classes.
« Memento: Capture and restore the internal state of an item.

« Null object: Intended to serve as an object’s default value.

+ Observer: A method of informing a group of classes of a change.
o State: When an object’s state changes, it affects its behavior.

o Strategy: A class that encapsulates an algorithm.

o Defer: Defer the particular stages of an algorithm to a subclass using
the Template method.

« Visitor: Adds a new action to a class without modifying it.

CRITICISM

Some programmers have questioned the concept of Design Patterns.

Focusing on the Incorrect Issue

Patterns are required as a result of employing computer languages or
approaches with insufficient abstraction capabilities. A notion should not be
duplicated, but rather referred to according to optimal factoring. However, if
something is referred to rather than copied, there is no “pattern” to identify
and categorize.!

No Official Foundations

The study of Design Patterns has been overly ad hoc, and some suggest that
the subject urgently needs to be formalized. One of the GOF was exposed
to a show trial at OOPSLA 1999, in which they were “charged” with several
crimes against computer science. Twenty-three of the “jurors” present at
the trial “convicted” them.

! https://sourcemaking.com/design_patterns

https://sourcemaking.com

Crash Course in Software Design Patterns = 13

May Result in Inefficient Solutions

A Design Pattern is an initiative to standardize well-known best prac-
tices. In theory, this appears to be advantageous, but it frequently leads to
unneeded code duplication. Using a well-factored implementation rather
than a “barely good enough” design style is nearly always a more efficient
approach.

It is Not Notably Different from Other Abstractions

Some writers argue that Design Patterns are not fundamentally different
from other types of abstraction and that using new vocabulary (taken from
the architectural industry) to explain existing occurrences in the field of
programming is superfluous. The Model-View-Controller (MVC) para-
digm is often used as an example of a “pattern,” even though the notion of
“Design Patterns” precedes it by several years. Some claim that the most
important contribution of the Design Patterns community was the use of
Alexander’s pattern language as form of documentation, a technique that
is largely ignored in the literature.

WHAT IS THE PURPOSE OF USING DESIGN PATTERNS?

Design Patterns provide a best practice approach to object-oriented soft-
ware development, making it easier to design, build, alter, test, and reuse.
These Design Patterns provide best practices and frameworks.

1. Tested Solution: Design Patterns give a tried-and-true solution to a
frequent problem, removing the need for the software developer to
“reinvent the wheel” whenever that problem arises.

2. Recyclable: Design Patterns may use to handle a wide range of issues;
they are not limited to a specific issue.

3. Expressive: Expressive Design Patterns provide a sophisticated
solution.

4. Avoid the Need for Code Refactoring: Because the Design Pattern
is already the best solution to the problem, reworking is unnecessary.

5. Reduce the Codebase Size: Each pattern assists software engineers
in changing how the system functions without requiring a complete
rebuild. Furthermore, being the “best” option, the Design Pattern
frequently necessitates less code.

14 = Software Design Patterns: The Ultimate Guide

DESIGN PATTERNS” ADVANTAGES IN
SOFTWARE ENGINEERING

As stated above in “Why do we need Design Patterns?,” the finest Software
Design Patterns will use a common language, making it simpler for engi-
neers to communicate about difficulties and improve code readability and

architecture in the early planning phases. When implemented correctly,
Design Patterns may speed up the development process and lessen the
likelihood of mistakes.

Design Patterns are also language-neutral (for object-oriented lan-
guages); however, some are more beneficial with some languages than
others.

SOFTWARE DESIGN PATTERN CRITIQUES

Overuse of Software Design Patterns has been criticized as a crutch for
programmers to rely on when a more straightforward solution would suf-
fice. Furthermore, there is not always a simple way to apply each pattern,

with the possibility of developing an anti-pattern (an inefficient or coun-
terproductive solution) if the wrong approach is used.

Furthermore, a Design Pattern can be used as a bridge for flaws or miss-
ing features in the programming language, frequently resulting in more
bloat than is required to get the program to perform appropriately. Ensure
that the language offers the characteristics required to avoid an over-
reliance on Design Patterns throughout the critical phase of selecting the
correct tech stack. Alternatively, our tech stack selection may bring us to a
framework that already has these Design Patterns implemented directly in
the framework in the best way possible.

BEST SOFTWARE DESIGN PATTERNS

Although Design Patterns — Elements of Reusable Object-Oriented Software
lists 23 Design Patterns, seven are the most influential or important. This
section discusses the top seven Software Design Patterns, their signifi-
cance, and when to utilize them.

1. Singleton Pattern Method Design: The singleton Design Pattern
belongs to the “creational” category since it limits object creation for
a class to only one instance and provides global access to a global
variable. Many web developers, for example, limit the “sitemap” to
a single version with global reach. Singletons may also use in other

Crash Course in Software Design Patterns m 15

patterns such as factory method, builder, and prototype. Singletons
are also common in the facade and state objects.

While we may only have or require one instance of a class, this
does not always imply that we should use the singleton pattern to
lock that object down or put it into a global state. Singletons are a
contentious Design Pattern, with some even saying that they should
avoid since locking up objects limit future flexibility.

. Factory Pattern Design: The factory pattern is a “creation” Design
Pattern in which developers generate objects with a standard inter-
face but enable a class to postpone instantiation to subclasses. The fac-
tory function encourages loose coupling and code reuse by acting as
a “virtual constructor” that works with any class that implements the
interface and gives subclasses more latitude in selecting the objects
to be constructed. New classes can be added to the factory as needed.

The factory approach is not ideal for basic applications, as devel-
opers run the danger of overcomplicating operations to utilize a
Design Pattern.

. Facade Pattern Design: A “structural” Design Pattern that aids in
providing a single interface (class) for access to a massive body of
code/different objects. With a simple interface, a facade hides the
intricacies of multiple sub-systems (typically arranged into a class).
For example, an eCommerce client prefers to connect with a brand
through a single point rather than communicating (interfacing)
with each system that supports the sale, such as product inventories,
authentication, security, payment processing, and order fulfillment,
and so on. In this scenario, the Facade has isolated all “order” opera-
tions and systems into a single interface, leaving the client entirely
oblivious of what’s going on behind the scenes. The facade is a critical
notion in supporting the loosely linked microservices architecture.

. Strategy Pattern Design: A strategy Design Pattern is a type of
“behavioral” Software Design Pattern that is sometimes referred
to as a policy pattern. The strategy pattern encapsulates replaceable
algorithms into a “family,” with one of the algorithms being picked
at runtime as needed. A family of algorithms, for example, may con-
nect to “sorting” things in an eCommerce website — by size, color,
reward, and so on. The plan is adopted in response to the customer’s
behaviors.

16 m Software Design Patterns: The Ultimate Guide

The strategy Design Pattern is highly effective in customization
marketing techniques, responding to the client location, inputs, or
actions to give a unique experience to each user.

5. Observer Pattern Design: The observer Design Pattern is “behav-
ioral,” with a one-to-many relationship relating an item (subject) to
dependents (observers). The subject is told when any of the observers’
changes. The observer Design Pattern is helpful in event-driven pro-
grams, such as informing a user of a new Facebook remark, sending
an email when an item delivers, etc.

6. Builder Pattern Design: The builder Design Pattern is “creative,” as
it separates object building from representation. This Design Pattern
gives us more control over the design process (it’s more step-by-step).
Still, it also decouples the representation so that we may support
alternative representations of an item with the same basic construc-
tion code (the ConcreteBuilder step).

As the object is being created, the builder pattern executes in
sequential phases, invoking just those required steps for each itera-
tion of the object.

7. Adapter Pattern Design: An adapter Design Pattern is a “wrapper”
that turns one type into another type of interface that already exists.
The adapter Design Pattern allows incompatible classes to operate
together, allowing programs to function together. Adapter patterns
are essential for transforming heterogeneous interfaces into a uni-
form APL

PATTERNS OF POPULAR SOFTWARE ARCHITECTURE

It is vital to note that architectural patterns may use in the software’s over-
all design. What exactly is a Design Pattern in architecture? A generic,
reusable solution to common architectural challenges (see how the con-
cept is nearly identical to that of software design?). These three Design
Patterns are related, although they have different sets of dependencies and
levels of coupling.

1. The MVC Design Pattern: The MVC Design Pattern was the first
architectural pattern, and it consists of the following three parts:

o Model: The model consists of the backend business logic and
data.

Crash Course in Software Design Patterns m 17

o View: The data-display interface components. It makes the
Observer Pattern to update with Model and shows the updated
model when needed.

o Controller: Managing Director Input is initially routed here,
where the model processes it and returns it to view.

The MVC Design Pattern is crucial because it enables the separa-
tion of concern. It divides the front and backend code into discrete
areas to allow updating and scaling the program simpler without
interference or interruption. The MVC paradigm also enables many
developers to concurrently work on various aspects of the program.
The downside, however, is that exposing the model to public scrutiny
may raise security and performance problems.

MVC is commonly used for online applications, libraries, and
user interfaces.

. Model-View-Presenter (MVP) Design Pattern: The MVP Design
Pattern is developed on MVC but replaces the controller with the
presenter and focuses solely on modeling the presentation layer.

o Model: The model consists of the backend business logic and
data.

o View: Input starts here, and the required action is displayed here.

o Presenter: Listens to the views and models one-on-one, pro-
cesses the request through the model, and returns it to the view.

The presenter in this architecture functions as a bridge between the
view and the model, allowing for a more loosely linked model. MVP
is suitable for reusing views and supporting unit testing.

MVP is often used for websites, online applications, and mobile
applications (mainly Android).

. Model View View-Model (MVVM) Design Pattern: In the MVVM
Design Pattern, there is two-way data binding between view and
view-model (replacing presenter in the MVP Design Pattern), which
more clearly separates the user interface and application