

Software Design Patterns

Software Design Patterns are reusable solutions to software development difficul-
ties. However, a Software Design Pattern is not code; rather, it is a guide or para-
digm that helps software engineers to construct products that follow best practices.
A Design Pattern is more of a template to tackle the topic at hand than a library
or framework, which can be added and utilized right away. Object-oriented pro-
gramming (OOP) is supported by Design Patterns, which are based on the ideas of
objects (instances of a class; data with unique attributes) and classes (user-defined
types of data). Design Patterns are blueprints for resolving typical software engineer-
ing issues. They provide reproducible solutions to some of the most prevalent dif-
ficulties you’ll encounter. That said, Design Patterns aren’t a complete solution, nor
are they code, classes, or libraries that you may use in your project. They are a type
of problem-solving solution. Each job will be approached in a slightly different way.

Why Should You Learn Software Design Patterns?

As a programmer, you can use Software Design Patterns to help you build more re-
liable structures. Design Patterns give you the skills to create smart and interactive
applications or software with simple and easy problem-solving methods; they also
allow you to create the greatest user-friendly apps and change them easily to meet
the latest requirements. Design Patterns are interesting to deal with since such
knowledge enables flexible coding patterns and techniques of structure, reusable
codes, loosely written codes, classes, patterns, and so on.

This book contains:

• A step-by-step approach to problem solving and skill development

• A quick run-through of the basic concepts, in the form of a “Crash Course”

• Advanced, hands-on core concepts, with a focus on real-world problems

• Industry level coding paradigm with practice-oriented explanations

• Special emphasis on writing clean and optimized code, with additional
chapters focused on coding methodology

https://taylorandfrancis.com

Software Design Patterns
The Ultimate Guide

Sufyan bin Uzayr

First edition published 2023
by CRC Press
6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2023 Sufyan bin Uzayr

Reasonable efforts have been made to publish reliable data and information, but the author and
publisher cannot assume responsibility for the validity of all materials or the consequences of their use.
The authors and publishers have attempted to trace the copyright holders of all material reproduced in
this publication and apologize to copyright holders if permission to publish in this form has not been
obtained. If any copyright material has not been acknowledged please write and let us know so we may
rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com
or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923,
978-750-8400. For works that are not available on CCC please contact mpkbookspermissions@tandf.
co.uk

Trademark Notice: Product or corporate names may be trademarks or registered trademarks and are
used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Names: Bin Uzayr, Sufyan, author.
Title: Software Design Patterns : the ultimate guide / Sufyan bin Uzayr.
Description: First edition. | Boca Raton : CRC Press, 2023. | Includes
bibliographical references and index.
Identifiers: LCCN 2022025677 (print) | LCCN 2022025678 (ebook) | ISBN
9781032311777 (hbk) | ISBN 9781032311760 (pbk) | ISBN 9781003308461 (ebk)
Subjects: LCSH: Software patterns.
Classification: LCC QA76.76.P37 B56 2023 (print) | LCC QA76.76.P37 (ebook) |
DDC 005.13/267--dc23/eng/20220804
LC record available at https://lccn.loc.gov/2022025677
LC ebook record available at https://lccn.loc.gov/2022025678

ISBN: 9781032311777 (hbk)
ISBN: 9781032311760 (pbk)
ISBN: 9781003308461 (ebk)

DOI: 10.1201/9781003308461

Typeset in Minion
by KnowledgeWorks Global Ltd.

https://www.copyright.com
https://lccn.loc.gov/2022025677
https://lccn.loc.gov/2022025678
https://doi.org/10.1201/9781003308461
mailto:mpkbookspermissions@tandf.co.uk
mailto:mpkbookspermissions@tandf.co.uk

v

Contents

Acknowledgments, xv

About the Author, xvii

Chapter 1 ◾ Crash Course in Software Design Patterns 1
WHAT IS THE PURPOSE OF DESIGN PATTERNS? 2

WHY SHOULD WE STUDY DESIGN PATTERNS? 4

DESIGN PATTERN CONFIGURATION 4

Design Pattern 4
WHAT IS THE SIGNIFICANCE OF THE DESIGN PATTERN? 5

TYPES OF DESIGN PATTERNS 5

Creational 5
Use Case of Creational Design Patterns 5

Structural 6
Use Case of Structural Design Patterns 6

Behavioral 6
Use Case of Behavioral Design Patterns 7

WHAT EXACTLY IS THE GANG OF FOUR (GOF)? 7

USAGE OF DESIGN PATTERNS 7

Developers’ Common Platform 7
Guidelines for Best Practices 7

IMPORTANCE OF LEARNING DESIGN PATTERNS 8

TYPES OF DESIGN PATTERNS 8

DESIGN PATTERNS AND THEIR APPLICATIONS 9

PATTERNS OF CREATIONAL DESIGN 9

vi ◾ Contents

PATTERNS OF STRUCTURAL DESIGN 10

PATTERNS OF BEHAVIORAL DESIGN 11

CRITICISM 12

Focusing on the Incorrect Issue 12
No Official Foundations 12
May Result in Inefficient Solutions 13
It is Not Notably Different from Other Abstractions 13

WHAT IS THE PURPOSE OF USING DESIGN PATTERNS? 13

DESIGN PATTERNS’ ADVANTAGES IN SOFTWARE
ENGINEERING 14

SOFTWARE DESIGN PATTERN CRITIQUES 14

BEST SOFTWARE DESIGN PATTERNS 14

PATTERNS OF POPULAR SOFTWARE ARCHITECTURE 16

LIMITATIONS OF DESIGN PATTERNS 18

PROS OF DESIGN PATTERNS 18

DESIGN PATTERN CLASSIFICATION 19

Creational Design Patterns 19
Classification of Creational Design Patterns 19

Structural Design Patterns 20
Classification of Structural Design Patterns 20

Behavioral Design Patterns 20
Classification of Behavioral Design Patterns 20

Creational Design Patterns 21
Structural Design Patterns 21
Behavioral Design Patterns 21

DESIGN PATTERNS IN JAVA 21

Design Patterns in Software Development 21
Object Orientated Programming 22

Encapsulation 22
Abstraction 22
Polymorphisms 23
Inheritance 23

Contents ◾ vii

Delegation 23
Composition 23
Aggregation 23
Contract Design 24
Cohesion 24
Principle of Least Knowledge 24
The Open-Closed Principle 24

Composition vs. Inheritance in Object-Oriented Design Patterns 25
Inheritance 25
Composition 26

Favoring Composition over Inheritance in Java (with Examples) 27
Inheritance 28
Composition 29
Composition over Inheritance 30

IS INHERITANCE EXTINCT? A CLOSER LOOK AT THE
DECORATOR PATTERN 30

Exploding Class Hierarchy 31
To the Rescue Comes the Decorator Pattern 33
Decorators Queue 34
Testability 35
Other Advantages 35
Drawbacks 36
Decorator Pattern Has Native Support 37
Abstract Decorator 38
When Should We Use Inheritance? 39

KEY POINTS 40

Chapter 2 ◾ Factory Pattern 41
FACTORY METHOD 41

UML FOR FACTORY METHOD 42

PATTERNS FOR FACTORY PATTERN DESIGN 42

Problem 42
Solution 44

viii ◾ Contents

ADVANTAGES OF USING THE FACTORY PATTERN 46

DRAWBACKS OF USING THE FACTORY PATTERN METHOD 46

APPLICABILITY 46

USES OF THE FACTORY DESIGN PATTERN 46

WHEN SHOULD WE UTILIZE FACTORY PATTERN METHODS? 47

Complex Logical Code Is Being Replaced 47
Bringing Together Related Functions under a Single Interface 47
Multiple Implementations of the Same Functionality Are
Supported 47
Integrating External Series That Are Linked 47

PROBLEMS WE CONFRONT IN THE ABSENCE OF THE
FACTORY METHOD 47

DISCUSSION 48

GENERAL GUIDELINES 48

Examples of Real-World Applications of the Factory Pattern
Method Design in Java 49
Calculate An Electricity Bill: A Real-World Application of the
Factory Method in Java 49
A Real-World Example of the Factory Design Pattern in C# 51

Chapter 3 ◾ Observer Pattern 59
PARTICIPANTS IN DESIGN 60

A PROBLEM 60

SOLUTION BASED ON THE OBSERVER PATTERN 60

CLASS DIAGRAM 63

ADVANTAGES 64

DISADVANTAGES 64

APPLICABILITY 64

USAGE 64

OBSERVER PATTERN’S PURPOSE 65

INTENT 65

PROBLEM 65

DISCUSSION 65

Contents ◾ ix

EXAMPLE 66

CHECKLIST 66

RULES OF THUMB 66

Here’s a Real-World Example of an Observer Pattern in Java 67
IMPLEMENT THE OBSERVER PATTERN 67

Another Example 69
IObservable and IObserver (C#) Observer 71

USAGE 73

Chapter 4 ◾ Template Method Pattern 75
THE FACTORY METHOD VS. THE TEMPLATE METHOD 76

THE ABC LIBRARY 77

WHEN SHOULD THE TEMPLATE METHOD PATTERN
BE USED? 77

USING PYTHON TO IMPLEMENT THE TEMPLATE
METHOD DESIGN PATTERN 78

ADVANTAGES 81

DISADVANTAGES 82

APPLICABILITY 82

USAGE 82

IMPORTANT POINTS 82

TEMPLATE METHOD PATTERN IMPLEMENTATION IN JAVA 83

TEMPLATE METHOD IN C# 87

Participants 87
C# Structural Code 87
Real-World C# Code 88

Chapter 5 ◾ Singleton Pattern 93
MOTIVATION 94

REAL-WORLD EXAMPLE 94

IMPLEMENTATION 95

Method 1: Design Pattern of Monostate/Borg Singleton 95

x ◾ Contents

CLASSIC IMPLEMENTATION OF SINGLETON DESIGN
PATTERN 97

CLASS DIAGRAM 98

BENEFITS OF USING THE SINGLETON PATTERN 99

DISADVANTAGES OF EMPLOYING THE SINGLETON
PATTERN 99

APPLICABILITY 99

USAGE OF SINGLETON DESIGN PATTERN 99

How to Implement the Singleton Design Pattern in Java 100
UNDERSTANDING EARLY SINGLETON PATTERN
INSTANTIATION 100

UNDERSTANDING THE LAZY SINGLETON
INSTANTIATION PATTERN 100

IMPORTANCE OF SERIALIZATION IN THE SINGLETON
PATTERN 101

UNDERSTANDING A REAL-WORLD EXAMPLE OF THE
SINGLETON PATTERN 102

ASSUMPTION 102

C# Singleton Pattern 108
Participants 108

C# Structural Code 108
Real-World C# Code 110

Chapter 6 ◾ Strategy Pattern 113
INTRODUCTION 113

STRATEGY 114

USAGE 114

UML DIAGRAMS 115

IMPLEMENTATION 116

EXAMPLE 118

BENEFITS 119

DOWNSIDES 120

APPLICABILITY 120

Example of a Real-Time Strategy Pattern – Payment in Java 120

Contents ◾ xi

STRATEGY PATTERN IMPLEMENTATION IN JAVA 120

C# Strategy Pattern 123
Participants 123

C# Structural Code 123
Real-World C# Code 125

Chapter 7 ◾ Proxy Pattern 129
WHY WOULD WE USE IT? 131

BETTER TESTABILITY 133

INTERFACE USING PROXY PATTERN 133

ANOTHER USEFUL EXAMPLE 135

HOW SHOULD THE PROXY PATTERN BE IMPLEMENTED? 139

ADVANTAGES 140

DISADVANTAGES 140

APPLICABILITY 141

IMPLEMENTATION 142

C# Proxy Pattern 143
Participants 143

C# Structural Code 144
Real-World C# Code 146

Chapter 8 ◾ Bridge Pattern 149
BRIDGE DESIGN PATTERN ELEMENTS 149

THE INSPIRATION FOR THE BRIDGE DESIGN PATTERN 150

USING PYTHON TO IMPLEMENT THE BRIDGE DESIGN
PATTERN 151

A PROBLEM 154

SOLUTION USING BRIDGE PATTERN 156

UML DIAGRAM OF BRIDGE PATTERN 158

REAL-WORLD BRIDGE DESIGN PATTERN 158

ADVANTAGES 158

DISADVANTAGES 159

APPLICABILITY 159

xii ◾ Contents

USAGE OF BRIDGE PATTERN 159

Using the Bridge Pattern in Java 160
Bridge Pattern in C# 163

Participants 163
C# Structural Code 163
Real-World C# Code 165

Chapter 9 ◾ Adapter and Façade Patterns 171
ADAPTER PATTERN 171

USING THE ADAPTER PATTERN TO SOLVE A PROBLEM 172

ADAPTER PATTERN SOLUTIONS 173

CLASS DIAGRAM 175

ADVANTAGES 175

DISADVANTAGES 175

APPLICABILITY 176

ADAPTER PATTERN USAGE 176

An Example of the Adapter Pattern in Java 176
Adapter Pattern in C# 178

Participants 178
C# Structural Code 179
Real-World C# Code 180

FACADE PATTERN 183

A PROBLEM 184

SOLUTION BASED ON THE FACADE PATTERN 185

CLASS DIAGRAM FOR THE FACADE METHOD 186

ADVANTAGES 186

DISADVANTAGES 186

APPLICABILITY 187

FACADE PATTERN USAGE 187

Implementation in Java 187

Contents ◾ xiii

Facade Pattern in C# 190
Participants 190

C# Structural Code 190
Real-World C# Code 193

APPRAISAL, 197

BIBLIOGRAPHY, 419

INDEX, 429

https://taylorandfrancis.com

xv

Acknowledgments

There are many people who deserve to be on this page, for this book would
not have come into existence without their support. That said, some names
deserve a special mention, and I am genuinely grateful to:

• My parents, for everything they have done for me.

• My siblings, for helping with things back home.

• The Parakozm team, especially Divya Sachdeva, Jaskiran Kaur, and
Vartika, for offering great amounts of help and assistance during the
book-writing process.

• The CRC team, especially Sean Connelly and Danielle Zarfati, for
ensuring that the book’s content, layout, formatting, and everything
else remain perfect throughout.

• Reviewers of this book, for going through the manuscript and pro-
viding their insight and feedback.

• Typesetters, cover designers, printers, and all related roles, for their
part in the development of this book.

• All the folks associated with Zeba Academy, either directly or indi-
rectly, for their help and support.

• The programming community in general, and the web development
community in particular, for all their hard work and efforts.

Sufyan bin Uzayr

https://taylorandfrancis.com

xvii

About the Author

Sufyan bin Uzayr is a writer, coder, and entrepreneur with over a decade
of experience in the industry. He has authored several books in the past, per-
taining to a diverse range of topics, ranging from History to Computers/IT.

Sufyan is the Director of Parakozm, a multinational IT company spe-
cializing in EdTech solutions. He also runs Zeba Academy, an online
learning and teaching vertical with a focus on STEM fields.

Sufyan specializes in a wide variety of technologies, such as JavaScript,
Dart, WordPress, Drupal, Linux, and Python. He holds multiple degrees,
including ones in Management, IT, Literature, and Political Science.

Sufyan is a digital nomad, dividing his time between four countries. He
has lived and taught in universities and educational institutions around
the globe. Sufyan takes a keen interest in technology, politics, literature,
history, and sports, and in his spare time, he enjoys teaching coding and
English to young students.

Learn more at sufyanism.com.

http://sufyanism.com

https://taylorandfrancis.com

1DOI: 10.1201/9781003308461-1

C h a p t e r 1

Crash Course in
Software Design
Patterns

IN THIS CHAPTER

➢ What are Software Design Patterns?

➢ Major concepts

➢ Advantages and disadvantages

➢ Additional info

Design Patterns represent some of the most acceptable practices experi-
enced object-oriented software engineers utilize. In object-oriented sys-
tems, a Design Pattern methodically names, motivates, and describes a
general design that addresses a recurring design challenge. It explains the
problem, the remedy, when to use it, and the repercussions. It also includes
tips and examples for implementation.

A Design Pattern is a broad, reusable solution to common software
design challenges. Typically, the pattern depicts relationships and inter-
actions between classes or objects. The goal is to accelerate the develop-
ment process by providing tried-and-true development/design paradigms.
Design Patterns are strategies for solving a common problem independent
of programming language. A Design Pattern represents an idea rather than

https://doi.org/10.1201/9781003308461-1

2 ◾ Software Design Patterns: The Ultimate Guide

a specific implementation. We can make our code more flexible, reusable,
and maintainable by employing Design Patterns.

It is not always necessary to use Design Patterns in our project. Design
Patterns are not intended for use in project development. Design Patterns
are intended to solve common problems. Whenever there is a need, we must
implement a suitable pattern to avoid future problems. To determine which
pattern to use, simply try to understand the Design Patterns and their func-
tions. In this manner only will we be able to choose the greatest one.

A Software Design Pattern is a generic, reusable solution to a typically
occurring problem in software design within a specific environment.

• It is not a finalized design that can simply translate into source or
machine code. It is a description or template for resolving a problem
that may use in a variety of circumstances.

• Design Patterns are best practices that have been established that
a programmer may apply to overcome common challenges while
developing an application or system.

Design Patterns provide answers to common issues, allowing code to be
more manageable, extendable, and loosely connected.

Developers have given solutions that handle a specific sort of problem a
name. And this is how it all began.

The more one understands them, the easier it is to solve all of our difficulties.
Goal: The goal is to understand the purpose and application of each Design

Pattern so that we can select and implement the appropriate pattern as needed.
Example: For example, in many real-world scenarios, we only want to

make one instance of a class. For example, a country can only have one
active president at any time. A Singleton pattern is the name given to this
design. Other software examples include a single database connection
shared by several objects, as establishing a separate database connection
for each item is expensive. Similarly, instead of developing many man-
agers, an application might have a single configuration manager or error
manager that handles all problems.

WHAT IS THE PURPOSE OF DESIGN PATTERNS?
As Software Developers, we frequently assess our code based on criteria
such as how clean, expressive, has a small memory footprint and is quick.
However, the most critical consideration, which we sometimes overlook,
is that we should be able to adjust anything later simply. What we chose

Crash Course in Software Design Patterns ◾ 3

now might not be applicable tomorrow. And our code should be adaptable
enough that changes are not prohibitively expensive. As a result, Design
Patterns are best practices for covering such properties. The essence of
Design Patterns, in my opinion, consists of the following six rules:

1. They are tried-and-true solutions: Because developers often use
Design Patterns, we may be confident that they function. Not only
that, but we can also guarantee that they were altered several times
and that optimizations were most likely performed.

2. They are simple to re-use: Design Patterns describe a reusable solu-
tion that may modify to solve various specific situations because they
aren’t tied to a specific situation.

Consider the Iterator Design Pattern, reusable across STL despite
container and algorithm changes. Iterators act as a glue between the
container and the algorithm.

3. They have a strong personalities: Design Patterns may elegantly
describe a considerable solution. The Visitor pattern, for example, is
used to perform a new operation on a range/group of classes. As a
result, the standard library adopted this design with a single function,
namely the std::visit algorithm. The same is true for boost::flyweight>.

4. They facilitate communication: Developers’ knowledge about
Design Patterns can communicate more readily about potential solu-
tions to a given challenge.

If we’re part of a team of developers, agree on Design Patterns with
our colleagues since they can help us solve problems more effectively.
We should also follow similar practices for software maintenance, as
it makes maintenance operations faster and more efficient.

5. They eliminate the need for code refactoring: When an application
is created with Design Patterns in mind, we may not need to rewrite
the code later since applying the relevant Design Pattern to a specific
problem is already an optimum solution.

If such solutions are later updated, they may be applied effortlessly
by any excellent software developer without causing any complications.

6. They reduce the codebase’s size: Design Patterns use less code than
alternative solutions since they are generally beautiful and optimal.
This isn’t always the case, because many developers add extra code to
improve understanding.

4 ◾ Software Design Patterns: The Ultimate Guide

WHY SHOULD WE STUDY DESIGN PATTERNS?
Object-Oriented Design is defined as merging data and its operations into
a context-bound entity (i.e., class/struct). This is also true while developing
a unique thing.

However, when creating an entire program, we must remember that
Creational Design Patterns: How will those objects be instantiated/created?

• Patterns of Structural Design: How do those items interact with
one another to produce a larger entity? This should be scalable in the
future.

• Patterns of Behavioral Design: We must also consider communica-
tion between those things that can quickly foresee future changes
and have fewer adverse effects.

Do we see where this is going? Maintainability, scalability, expressiveness,
and stability must be considered while thinking about objects. So, in a
word, this is a coding mindset. And we’re pretty sure we don’t have this
attitude and thought process if we come from a C background.

DESIGN PATTERN CONFIGURATION
The fundamental structure of the Design Pattern documentation is
depicted in the following figure. It focuses on what technology we are
employing to address challenges and how we do so.

Design Pattern

Configuration of Design Pattern.

Crash Course in Software Design Patterns ◾ 5

• Pattern Name: This is used to define the pattern concisely and
effectively.

• Intent/Motive: It specifies the pattern’s objective or what it does.

• Applicability: It specifies all of the conceivable locations the pattern
may use.

• Participants and Repercussions: It comprises classes and objects
utilized in the Design Pattern and a list of the pattern’s consequences.

WHAT IS THE SIGNIFICANCE OF THE DESIGN PATTERN?
Design Patterns are used to solve reoccurring design challenges. In a nut-
shell, Design Patterns do not solve the problem on their own; instead, they
assist us in addressing the problem.

Software development Design Patterns began as best practices used
repeatedly to similar challenges found in various situations.

Design Patterns have been used to overcome the following frequent
problems:

• How to correctly initialize an object.

• How to make two items interact with one other.

TYPES OF DESIGN PATTERNS
Design Patterns are divided into the following three categories.

Creational

Class instantiation or object generation is the focus of these Design Patterns.
Class-creational patterns and object-creational patterns are two subsets of
these patterns. While class-creation patterns make good use of inheritance
in the instantiation process, object-creation patterns use delegation.

Factory Method, Abstract Factory, Builder, Singleton, Object Pool, and
Prototype are creational Design Patterns.

Use Case of Creational Design Patterns

1. Assume a programmer wants to create a simple DBConnection class
to connect to a database and needs to use the database from code in
numerous places. The developer will typically create an instance of
the DBConnection class and use it to perform database operations
wherever they are needed. As each example of the DBConnection

6 ◾ Software Design Patterns: The Ultimate Guide

class has a different connection to the database, numerous con-
nections to the database are created. To deal with it, we make the
DBConnection class a singleton class, which means that only one
instance of DBConnection is generated, and only one connection is
made. We can control load balance, redundant connections, and so
on since we can manage DBConnection from a single instance.

2. We can use the Factory design if we wish to create several instances
of the same type while maintaining loose coupling. A factory-Design
Pattern-implemented class acts as a link between numerous classes –
for instance, the use of various database servers such as SQL Server
and Oracle. We should use the Factory Design Pattern to achieve
loose coupling and create a similar kind of object if we are developing
an application with a SQL Server database as the back end. Still, if we
need to change the database to Oracle, we will need to modify all of
our code. Hence, as Factory Design Patterns maintain loose coupling
and easy implementation, we should use the factory layout design to
achieve loose coupling and create a similar kind of object.

Structural

These Design Patterns deal with grouping distinct classes and objects
together to create larger structures and add new functionality.

Adapter, Bridge, Composite, Decorator, Facade, Flyweight, Private
Class Data, and Proxy are structural Design Patterns.

Use Case of Structural Design Patterns

1. An Adapter Design Pattern is used when two interfaces are incom-
patible and want to establish a relationship between them using
an adapter. The adapter pattern transforms a class’s interface into
another interface or class that the client expects, allowing classes
that would otherwise be incompatible with operating together. We
can use the adapter pattern in these types of incompatible instances.

Behavioral

Identifying and discovering shared communication patterns between
items are all about behavioral patterns.

Chain of Responsibility, Command, Interpreter, Iterator, Mediator,
Memento, Null Object, Observer, State, Scheme, Template method, and
Visitor are behavioral patterns.

Crash Course in Software Design Patterns ◾ 7

Use Case of Behavioral Design Patterns

1. In an operation, the template pattern defines the skeleton of an algo-
rithm by deferring some stages to subclasses. Subclasses can use the
template technique to rewrite specific phases of an algorithm without
affecting the algorithm’s structure. For example, we might want the
module’s behavior to be extensible in our project. We can make it
act in new and different ways when the application’s requirements
evolve or satisfy new applications’ demands. However, no one is per-
mitted to edit the source code, which means that we can add but not
change the structure in circumstances when a developer is permitted
to apply the template Design Pattern.

WHAT EXACTLY IS THE GANG OF FOUR (GOF)?
The book Design Patterns – Elements of Reusable Object-Oriented
Software, written by four writers, Erich Gamma, Richard Helm, Ralph
Johnson, and John Vlissides, was published in 1994 and introduced the
first concept of Design Patterns in software development.

Gang of Four is the collective name for these four authors (GOF).
According to these authors, Design Patterns are essentially based on the
following object-oriented design principles:

• Not an implementation, but a program to an interface.

• Object composition should take precedence over the inheritance.

USAGE OF DESIGN PATTERNS
Patterns have two main applications in software development.

Developers’ Common Platform

Design Patterns define a common language and are tailored to a given con-
text. A singleton Design Pattern, for example, denotes the use of a single
object; thus, all developers who are familiar with single Design Patterns
will use single objects, and they will be able to detect whether a program is
following a singleton pattern.

Guidelines for Best Practices

Design Patterns have evolved to provide the best answers to specific problems
encountered during software development. Learning these patterns makes it
easier and faster for inexperienced developers to learn software design.

8 ◾ Software Design Patterns: The Ultimate Guide

IMPORTANCE OF LEARNING DESIGN PATTERNS
Many software engineers could work for many years without understand-
ing any single pattern. It can also happen; we can be applying a pattern
without even knowing it. So, the question is, why should we examine the
Design Pattern? Consider the following arguments, which highlight the
importance of Design Patterns in development.

Design Patterns contain the predetermined collection of tried and veri-
fied solutions to a common problem faced when designing software. If we
know about the Design Pattern, we can implement the solution without
wasting time. It also shows us how to tackle the problem using the idea of
object-oriented design.

Design Pattern also promotes a common understanding between the
developer and their coworkers. Suppose there is an issue in the code, and
we may say, “Use Singleton for that,” and everyone can understand if they
understand the Design Pattern and its name.

Design Patterns are also crucial for the learning purpose since they intro-
duce the common problem we may have neglected. They also allow con-
templating that area that may not have received the hands-on experience.

TYPES OF DESIGN PATTERNS
According to the Design Patterns – Elements of Reusable Object-Oriented
Software reference book, 23 Design Patterns can be grouped into cre-
ational, structural, and behavioral patterns. We’ll also go over J2EE Design
Patterns, which are different.

S. No. Pattern & Description

1 Patterns of Creation
Rather of explicitly instantiating objects with the new operator, these Design
Patterns provide a way for building things without hiding the creation logic.
This gives the software greater flexibility in identifying which items are
necessary for a given use case.

2 Structural Patterns
Structural Patterns are the patterns that make up the structure of a building.
These Design Patterns deal with the composition of classes and objects.
Inheritance is a concept used to create interfaces and define how to combine
items to create new functions.

3 Patterns of Behavior
These Design Patterns are mostly concerned with object communication.

4 Patterns for J2EE
These Design Patterns are concerned with the presentation tier in particular.
Sun Java Centre has detected these tendencies.

Crash Course in Software Design Patterns ◾ 9

DESIGN PATTERNS AND THEIR APPLICATIONS
By providing tried-and-true development paradigms, Design Patterns can
assist to speed the development process. Considering concerns that may
not become apparent until later in the implementation process is critical
for good software design. Reusing Design Patterns helps to prevent minor
issues from becoming significant ones and enhances code readability for
experienced coders and architects.

Most people understand how to apply certain software design concepts
to specific issues. These methods are challenging to adapt to a wider vari-
ety of challenges. Design Patterns give generic answers that are defined in
a way that does not necessitate specifics related to a specific situation.

Furthermore, patterns enable developers to talk about software inter-
actions using well-known, well-understood terms. Over time, common
Design Patterns may be enhanced, making them more resilient than ad
hoc ideas.

PATTERNS OF CREATIONAL DESIGN
Class instantiation is central to several Design Patterns. This pattern is
separated into two types: class-creation patterns and object-creation pat-
terns. While class-creation patterns employ inheritance in the instantia-
tion process, object-creation patterns effectively use delegation.

Patterns of creational design.

10 ◾ Software Design Patterns: The Ultimate Guide

• Abstract Factory: Creates an instance of numerous families of
classes using an abstract factory.

• Builder: Distinguishes the building of a thing from its representation.

• Factory Method: This method creates instances of multiple derived
classes.

• Object Pool: Recycle objects that are no longer used to save money
on resource acquisition and release.

• Prototype: An instance that has been fully initialized and is ready to
be duplicated or cloned.

• Singleton: It is a class that can only have one instance.

PATTERNS OF STRUCTURAL DESIGN
The composition of Classes and Objects is essential to these design princi-
ples. Inheritance is used to construct interfaces in structural class-creation
patterns. Structural object-patterns outline how objects may combine to
provide new functionality.

Patterns of creational design.

• Adapter: Interfaces from several classes must match.

• Bridge: Separates the interface of an object from its implementation.

Crash Course in Software Design Patterns ◾ 11

• Composite: A basic and composite object tree structure.

• Decorator: Dynamically assign responsibilities to objects

• Facade: A single class represents a whole subsystem.

• Flyweight: A fine-grained instance for distributing.

• Private Class Data: Restricts accessor/mutator access.

• Proxy: An object that is a representation of another item.

PATTERNS OF BEHAVIORAL DESIGN
These Design Patterns are mostly about Class object communication.
Behavioral patterns are concerned largely with the transfer of objects.

Patterns of creational design.

• Chain of responsibility: A chain of responsibility is transmitting a
request between objects in a chain.

• Command: As an object, encapsulate a command request.

12 ◾ Software Design Patterns: The Ultimate Guide

• Interpreter: A method of incorporating linguistic features into a
program.

• Iterator: A method for accessing the items of a collection in a sequen-
tial manner.

• Mediator: A class that facilitates communication between classes.

• Memento: Capture and restore the internal state of an item.

• Null object: Intended to serve as an object’s default value.

• Observer: A method of informing a group of classes of a change.

• State: When an object’s state changes, it affects its behavior.

• Strategy: A class that encapsulates an algorithm.

• Defer: Defer the particular stages of an algorithm to a subclass using
the Template method.

• Visitor: Adds a new action to a class without modifying it.

CRITICISM
Some programmers have questioned the concept of Design Patterns.

Focusing on the Incorrect Issue

Patterns are required as a result of employing computer languages or
approaches with insufficient abstraction capabilities. A notion should not be
duplicated, but rather referred to according to optimal factoring. However, if
something is referred to rather than copied, there is no “pattern” to identify
and categorize.1

No Official Foundations

The study of Design Patterns has been overly ad hoc, and some suggest that
the subject urgently needs to be formalized. One of the GOF was exposed
to a show trial at OOPSLA 1999, in which they were “charged” with several
crimes against computer science. Twenty-three of the “jurors” present at
the trial “convicted” them.

1 https://sourcemaking.com/design_patterns

https://sourcemaking.com

Crash Course in Software Design Patterns ◾ 13

May Result in Inefficient Solutions

A Design Pattern is an initiative to standardize well-known best prac-
tices. In theory, this appears to be advantageous, but it frequently leads to
unneeded code duplication. Using a well-factored implementation rather
than a “barely good enough” design style is nearly always a more efficient
approach.

It is Not Notably Different from Other Abstractions

Some writers argue that Design Patterns are not fundamentally different
from other types of abstraction and that using new vocabulary (taken from
the architectural industry) to explain existing occurrences in the field of
programming is superfluous. The Model-View-Controller (MVC) para-
digm is often used as an example of a “pattern,” even though the notion of
“Design Patterns” precedes it by several years. Some claim that the most
important contribution of the Design Patterns community was the use of
Alexander’s pattern language as form of documentation, a technique that
is largely ignored in the literature.

WHAT IS THE PURPOSE OF USING DESIGN PATTERNS?
Design Patterns provide a best practice approach to object-oriented soft-
ware development, making it easier to design, build, alter, test, and reuse.
These Design Patterns provide best practices and frameworks.

1. Tested Solution: Design Patterns give a tried-and-true solution to a
frequent problem, removing the need for the software developer to
“reinvent the wheel” whenever that problem arises.

2. Recyclable: Design Patterns may use to handle a wide range of issues;
they are not limited to a specific issue.

3. Expressive: Expressive Design Patterns provide a sophisticated
solution.

4. Avoid the Need for Code Refactoring: Because the Design Pattern
is already the best solution to the problem, reworking is unnecessary.

5. Reduce the Codebase Size: Each pattern assists software engineers
in changing how the system functions without requiring a complete
rebuild. Furthermore, being the “best” option, the Design Pattern
frequently necessitates less code.

14 ◾ Software Design Patterns: The Ultimate Guide

DESIGN PATTERNS’ ADVANTAGES IN
SOFTWARE ENGINEERING
As stated above in “Why do we need Design Patterns?,” the finest Software
Design Patterns will use a common language, making it simpler for engi-
neers to communicate about difficulties and improve code readability and
architecture in the early planning phases. When implemented correctly,
Design Patterns may speed up the development process and lessen the
likelihood of mistakes.

Design Patterns are also language-neutral (for object-oriented lan-
guages); however, some are more beneficial with some languages than
others.

SOFTWARE DESIGN PATTERN CRITIQUES
Overuse of Software Design Patterns has been criticized as a crutch for
programmers to rely on when a more straightforward solution would suf-
fice. Furthermore, there is not always a simple way to apply each pattern,
with the possibility of developing an anti-pattern (an inefficient or coun-
terproductive solution) if the wrong approach is used.

Furthermore, a Design Pattern can be used as a bridge for flaws or miss-
ing features in the programming language, frequently resulting in more
bloat than is required to get the program to perform appropriately. Ensure
that the language offers the characteristics required to avoid an over-
reliance on Design Patterns throughout the critical phase of selecting the
correct tech stack. Alternatively, our tech stack selection may bring us to a
framework that already has these Design Patterns implemented directly in
the framework in the best way possible.

BEST SOFTWARE DESIGN PATTERNS
Although Design Patterns – Elements of Reusable Object-Oriented Software
lists 23 Design Patterns, seven are the most influential or important. This
section discusses the top seven Software Design Patterns, their signifi-
cance, and when to utilize them.

1. Singleton Pattern Method Design: The singleton Design Pattern
belongs to the “creational” category since it limits object creation for
a class to only one instance and provides global access to a global
variable. Many web developers, for example, limit the “sitemap” to
a single version with global reach. Singletons may also use in other

Crash Course in Software Design Patterns ◾ 15

patterns such as factory method, builder, and prototype. Singletons
are also common in the facade and state objects.

While we may only have or require one instance of a class, this
does not always imply that we should use the singleton pattern to
lock that object down or put it into a global state. Singletons are a
contentious Design Pattern, with some even saying that they should
avoid since locking up objects limit future flexibility.

2. Factory Pattern Design: The factory pattern is a “creation” Design
Pattern in which developers generate objects with a standard inter-
face but enable a class to postpone instantiation to subclasses. The fac-
tory function encourages loose coupling and code reuse by acting as
a “virtual constructor” that works with any class that implements the
interface and gives subclasses more latitude in selecting the objects
to be constructed. New classes can be added to the factory as needed.

The factory approach is not ideal for basic applications, as devel-
opers run the danger of overcomplicating operations to utilize a
Design Pattern.

3. Facade Pattern Design: A “structural” Design Pattern that aids in
providing a single interface (class) for access to a massive body of
code/different objects. With a simple interface, a facade hides the
intricacies of multiple sub-systems (typically arranged into a class).
For example, an eCommerce client prefers to connect with a brand
through a single point rather than communicating (interfacing)
with each system that supports the sale, such as product inventories,
authentication, security, payment processing, and order fulfillment,
and so on. In this scenario, the Facade has isolated all “order” opera-
tions and systems into a single interface, leaving the client entirely
oblivious of what’s going on behind the scenes. The facade is a critical
notion in supporting the loosely linked microservices architecture.

4. Strategy Pattern Design: A strategy Design Pattern is a type of
“behavioral” Software Design Pattern that is sometimes referred
to as a policy pattern. The strategy pattern encapsulates replaceable
algorithms into a “family,” with one of the algorithms being picked
at runtime as needed. A family of algorithms, for example, may con-
nect to “sorting” things in an eCommerce website – by size, color,
reward, and so on. The plan is adopted in response to the customer’s
behaviors.

16 ◾ Software Design Patterns: The Ultimate Guide

The strategy Design Pattern is highly effective in customization
marketing techniques, responding to the client location, inputs, or
actions to give a unique experience to each user.

5. Observer Pattern Design: The observer Design Pattern is “behav-
ioral,” with a one-to-many relationship relating an item (subject) to
dependents (observers). The subject is told when any of the observers’
changes. The observer Design Pattern is helpful in event-driven pro-
grams, such as informing a user of a new Facebook remark, sending
an email when an item delivers, etc.

6. Builder Pattern Design: The builder Design Pattern is “creative,” as
it separates object building from representation. This Design Pattern
gives us more control over the design process (it’s more step-by-step).
Still, it also decouples the representation so that we may support
alternative representations of an item with the same basic construc-
tion code (the ConcreteBuilder step).

As the object is being created, the builder pattern executes in
sequential phases, invoking just those required steps for each itera-
tion of the object.

7. Adapter Pattern Design: An adapter Design Pattern is a “wrapper”
that turns one type into another type of interface that already exists.
The adapter Design Pattern allows incompatible classes to operate
together, allowing programs to function together. Adapter patterns
are essential for transforming heterogeneous interfaces into a uni-
form API.

PATTERNS OF POPULAR SOFTWARE ARCHITECTURE
It is vital to note that architectural patterns may use in the software’s over-
all design. What exactly is a Design Pattern in architecture? A generic,
reusable solution to common architectural challenges (see how the con-
cept is nearly identical to that of software design?). These three Design
Patterns are related, although they have different sets of dependencies and
levels of coupling.

1. The MVC Design Pattern: The MVC Design Pattern was the first
architectural pattern, and it consists of the following three parts:

• Model: The model consists of the backend business logic and
data.

Crash Course in Software Design Patterns ◾ 17

• View: The data-display interface components. It makes the
Observer Pattern to update with Model and shows the updated
model when needed.

• Controller: Managing Director Input is initially routed here,
where the model processes it and returns it to view.

The MVC Design Pattern is crucial because it enables the separa-
tion of concern. It divides the front and backend code into discrete
areas to allow updating and scaling the program simpler without
interference or interruption. The MVC paradigm also enables many
developers to concurrently work on various aspects of the program.
The downside, however, is that exposing the model to public scrutiny
may raise security and performance problems.

MVC is commonly used for online applications, libraries, and
user interfaces.

2. Model-View-Presenter (MVP) Design Pattern: The MVP Design
Pattern is developed on MVC but replaces the controller with the
presenter and focuses solely on modeling the presentation layer.

• Model: The model consists of the backend business logic and
data.

• View: Input starts here, and the required action is displayed here.

• Presenter: Listens to the views and models one-on-one, pro-
cesses the request through the model, and returns it to the view.

The presenter in this architecture functions as a bridge between the
view and the model, allowing for a more loosely linked model. MVP
is suitable for reusing views and supporting unit testing.

MVP is often used for websites, online applications, and mobile
applications (mainly Android).

3. Model View View-Model (MVVM) Design Pattern: In the MVVM
Design Pattern, there is two-way data binding between view and
view-model (replacing presenter in the MVP Design Pattern), which
more clearly separates the user interface and application logic:

• Model: The model consists of the backend business logic and data.

18 ◾ Software Design Patterns: The Ultimate Guide

• View: Input starts here, and the required action is displayed here.

• View-Model: It has no reference to view; its sole function is to
keep the state of view and adjust the model when view actions
change.

MVVM enables the creation of view-specific portions of a model
with the state and logic connected to the view, needing less logic in
the code to run the view. MVVM is good for improving speed and
allowing for more customization and customization of the display.

MVVM is also widely utilized in mobile apps (particularly in
Android), where bidirectional data binding is essential.

LIMITATIONS OF DESIGN PATTERNS

• It might be challenging to decide whether or not to use a Design
Pattern.

• Due to their generic character, Design Patterns may not be able
to handle specific difficulties. We will need to adjust and modify
their implementation to meet our specific requirements in such
circumstances.

• To successfully implement Design Patterns, a certain level of skill is
necessary.

• Unexperienced teams may fail to implement them, resulting in
defects and unanticipated delays effectively.

PROS OF DESIGN PATTERNS

• It is simple to predict and correct future issues.

• Assists in preserving binary compatibility with future versions.

• Simply adhering to SOLID Principles aids immensely in agile or
adaptive software development.

• The method makes it easier to create highly coherent modules with
the minimum connection. As a result, extensibility and reusability
are increased.

Crash Course in Software Design Patterns ◾ 19

• Some designs, such as Facade and Proxy, encapsulate the complexity
to give the client a simple and understandable interface. As a result,
the total system is easier to grasp, and the learning curve is reduced.

• Design Patterns improve the clarity and precision of communica-
tion between designers and developers. When discussing software
design, a developer may quickly visualize the high-level design in
their thoughts when they mention the name of the pattern employed
to tackle a particular issue.

DESIGN PATTERN CLASSIFICATION

Classification of Design Patterns.

Creational Design Patterns

A creational pattern gives critical information about the instantiation of a
class or an object. The creational Design Patterns have been divided into
Class-Creational Patterns and Object-Creational Patterns. While class-
creation patterns employ inheritance in the instantiation process, object-
creation patterns effectively use delegation.

Classification of Creational Design Patterns

• Factory Pattern

• Abstract Factory Pattern

• Builder Pattern

• Prototype Pattern

• Singleton Pattern

20 ◾ Software Design Patterns: The Ultimate Guide

Structural Design Patterns

Structural design patterns organize different classes and objects to form
larger structures and provide new functionality while keeping these struc-
tures flexible and efficient. Mostly they use inheritance to compose all the
interfaces. It also identifies the relationships which led to the simplifica-
tion of the structure.

Classification of Structural Design Patterns

• Adapter Pattern

• Bridge Pattern

• Composite Pattern

• Decorator Pattern

• Facade Pattern

• Proxy Pattern

• Flyweight Pattern

Behavioral Design Patterns

Behavioral Design Patterns are all about identifying the common commu-
nication patterns between objects and realizing these patterns. These pat-
terns are concerned with algorithms and the assignment of responsibilities
between objects.

Classification of Behavioral Design Patterns

• Chain of Responsibility Pattern

• Command Pattern

• Iterator Pattern

• Mediator Pattern

• Memento Pattern

• Observer Pattern

• State Pattern

• Strategy Pattern

Crash Course in Software Design Patterns ◾ 21

• Template Pattern

• Visitor Pattern

Creational Design Patterns

Creational Design Patterns are focused with the creation of items. These
Design Patterns are used when a decision must be made during the instan-
tiation of a class (i.e., creating an object of a class).

This pattern is separated into two types: class-creation patterns and
object-creation patterns. In the instantiation process, class-creation pat-
terns leverage inheritance, whereas object-creation patterns effectively use
delegation.

Structural Design Patterns

Structural Design Patterns are concerned with the composition of classes
and objects to construct more significant structures. By recognizing link-
ages, structural Design Patterns simplify the structure.

These theories are associated with how classes inherit from one another
and are constructed by other classes.

Inheritance is used to construct interfaces in structural class-creation
patterns. Structural object-patterns outline how objects may be combined
to provide new functionality.

Behavioral Design Patterns

Behavioral Design Patterns are associated with the interaction and
responsibility of things. The interaction between the items in these Design
Patterns should be such that they may readily communicate with one other
while being loosely connected.

The implementation and client should be loosely connected to prevent
hard coding and dependencies.

DESIGN PATTERNS IN JAVA
Design Patterns are recommended practices for solving well-known chal-
lenges. This article will provide an overview of best practices in object-
oriented programming and links to several design-pattern lessons.

Design Patterns in Software Development

Design Patterns are tried-and-true techniques to solve specific challenges. A
Design Pattern is not a framework and cannot be deployed directly via code.

22 ◾ Software Design Patterns: The Ultimate Guide

There are two primary applications for Design Patterns:

• Developers’ common language: They give a common language for
developers to solve specific challenges. For example, if one developer
informs another that he is using a Singleton, the other developer
(should) understand precisely what this entails.

• Design Patterns are used to record solutions that have been effec-
tively applied to issues. An inexperienced developer learns a lot about
software design by studying these patterns and the corresponding
challenge.

Design Patterns are founded on the fundamental concepts of object-
oriented design:

• Not an implementation, but a program to an interface

• Prefer object composition over inheritance.

Design Patterns are classified as follows:

• Creational Patterns

• Structural Patterns

• Behavioral Patterns

Object Orientated Programming

According to good programming practice, the following principles should
be followed while designing software. The following are not design prin-
ciples but rather examples of excellent software design.

Encapsulation
To guarantee data encapsulation, widespread manipulation of an object’s
variables by other objects or classes is often discouraged. A class should
provide methods that allow other objects to access variables. Objects that
are no longer in use are deleted by Java (garbage collection).

Abstraction
Java supports the abstraction of data specification and its concrete
application.

Crash Course in Software Design Patterns ◾ 23

The idea is separated from the concrete, which means that we define a
class first, which contains the variables and the behavior (methods), and then
we construct the actual objects, which all behave how the class described it.

A class is the behavior and data specification. A class cannot use directly.
A genuine object that may be dealt with is an object is an instance of

this class.

Polymorphisms
The capacity of object variables to hold objects of various kinds. If class X1
is a subclass of class X, then a method specified with a parameter for an
object X may be invoked on an object X1.

If we establish a supertype for a collection of classes, any subclass of that
supertype may use in place of the supertype.

Any object that implements the interface may be used as an argument
when an interface is utilized as a polymorphic type.

Inheritance
Classes may be based on each other because of inheritance. When class A
inherits another class B, this is referred to as “class A extends class B.”

For example, we may design a basic class that offers logging capabil-
ity and is extended by another class that adds email notification to the
functionality.

Delegation
Delegation occurs when we transfer responsibility for a certain job to
another class or method.

If we need to access functionality from another class but do not want to
alter it, use delegation instead of inheritance.

Composition
When referring to a group of behaviors, you use composition. We program
against an interface, and any class that implements that interface may be cre-
ated. The composition class is still declared in the caller class in composition.

When you use composition, the composing object owns the behaviors that
it employs, and they cease to exist when the composing object disappears.

Aggregation
Aggregation enables us to utilize functionality from another class without
restricting its lifespan.

24 ◾ Software Design Patterns: The Ultimate Guide

Aggregation occurs when one class is utilized as a part of another class
yet exists independently of that class.

Contract Design
Contract programming requires that both parties in a transaction under-
stand what actions cause what behavior and will abide by that contract.

When failures occur in the programming by contract environment,
methods often produce null or unchecked exceptions.

Throw an unchecked runtime exception if you feel a method should
not be invoked in a certain manner. This has the potential to be really
effective. Instead of checking for exceptions in your calling code, you just
throw an exception in the called function. As a result, you may more easily
pinpoint the location in the code where an issue occurred. This adheres to
the “crash-early” philosophy, which states that if an error happens in your
software, you should crash promptly rather than later in the program since
this makes it challenging to discover the issue.

Cohesion
A system’s cohesiveness should be high.

Cohesion is how closely connected and concentrated a particular class’s
obligations are. It is advantageous in object-oriented programming to allo-
cate responsibilities to classes to maintain good cohesion.

In a highly coherent system, code readability and the chance of reuse
are raised while complexity is maintained reasonably.

As a result, avoid classes with many responsibilities; for example, a
Logger class should solely be responsible for logging.

Principle of Least Knowledge
Only talk to our closest buddies.

Also known as Demeter’s Law.

The Open-Closed Principle
Software elements like classes, modules, and functions should be exten-
sible but not adjustable.

This approach encourages developers to build readily extensible code
with minimum or no modifications to current code.

An example of good use of these ideas would be when a specific class
invokes an abstract class inside to perform a specific action. This class is
given with a concrete implementation of this abstract class during runtime.

Crash Course in Software Design Patterns ◾ 25

This enables the developer to subsequently create more concrete calls to
this abstract class without modifying the class code that utilizes it.

The Eclipse Extension Point method is another outstanding example.
Eclipse plugins or Eclipse-based applications may establish extension
points to which other plug-ins might add functionality afterward.

Composition vs. Inheritance in Object-Oriented Design Patterns

Now, let us compare Composition with Inheritance.

Inheritance
An element that inherits from a parent element is said to have a “is a”
connection in terms of class relationships. Because a square is a shape, it
makes it logical for the square to inherit from form.

When we realize that we’re specifying the same behavior across several
instances, inheritance might be a useful pattern. In the case of software that
works with numerous sorts of shapes, we may have a method drawBorder
that is replicated across several distinct types of forms. So, what’s the big
deal, we may wonder? The problems occur when we wish to adjust drawBor-
der, or worse when we uncover a fault in the method. Refactoring involves
crawling through our project and updating each and every occurrence of
the method. A faulty drawBorder method implies we’ve now strewn the
same flaw across our source, resulting in extensive vulnerabilities.

Inheritance attempts to address this issue by abstracting the commonly
used method into a parent class that offers a generic enough implementa-
tion of drawBorder that it can be used to draw the border of any shape
regardless of type (this “genericness” is critical, as having an overly spe-
cialized base can lead to a slew of downstream issues).

26 ◾ Software Design Patterns: The Ultimate Guide

Every new class that “is a” shape may now inherit from the parent shape
class and utilize its drawBorder specification. One of the primary advantages
is efficient code reuse and easy message delegation across classes. We also gain
from following the open-closed concept, which specifies that components
should be open to expansion but closed to alteration. Assume we wanted to
add additional shapes to our software, each with its own distinct properties.
We may utilize inheritance to enhance the current drawBorder method to
add additional features without changing any code in the parent class.

While open-closed is ideal, we will sometimes need to alter the par-
ent class – maybe because we uncovered a problem or a new technique
to increase performance. Before inheritance, we had to track down every
instance of drawBorder, but now if we want to alter anything, all we have
to do is update the implementation of the parent class, and the change will
cascade down every subclass. That’s quite cool.

The disadvantage of this strategy is that altering the implementation of
the parent class would have cascade consequences on all subclasses. Isn’t
that an advantage? We’ve arrived at the double-edged sword of inheritance,
where enormous power comes with immense responsibility. Because inher-
itance makes it easy to modify the behavior of a wide portion of our code-
base with simple changes in one place, it has established tightly coupled
dependencies in our application. Every subclass is directly dependent on its
parent, and modifications in one may require changes in the other.

Another disadvantage of inheritance is that we must normally make
broad assumptions about how the program will use in the future. Maybe
we as a programmer can’t envision our drawBorder method ever being
given a form it doesn’t recognize, but we also never imagined that the
mind-bending Mobius strip would attempt to inherit from shape, and
your software would crumble.

This is why the refrain of favoring composition over inheritance is so
popular. It’s not that inheritance isn’t beneficial; nevertheless, when used
carelessly or as a solution to the incorrect issue, it may cause considerable
problems down the line, perhaps to the point where adding new function-
ality without breaking current features is almost difficult.

Composition
Composition defines a “has-a” connection, while inheritance defines a “is-
a” relationship. A project that employs composition to orchestrate com-
ponent interaction focuses on merging several little pieces that combine
forces to form something that is greater than the sum of their parts.

Crash Course in Software Design Patterns ◾ 27

If we put composition over our previous shape metaphor, we may con-
ceive of the distinct pieces merged to form a shape. We may end up with
things like straightLine, curvedLine, and so on that, we can mix and rear-
range in various ways to get the forms we want to utilize. Then we might
write a class that implements drawBorder with an interface that takes an
object made of lines, and drawBorder would be able to carry out its obliga-
tions as long as it has lines. Separating the roles in this way provides for
more freedom and flexibility in the separate sections.

Composition, unlike inheritance, does not provide automatic mes-
sage delegation. We must clearly define the public interface of each unit
so that it understands how to communicate with other portions of the
program. There may be some duplication in these interfaces, but unlike
inheritance, there is no built-in method to reuse that code via composi-
tion. The flip side of the coin is that since they are not directly inher-
iting behavior, each unit is immune to possible side-effects of other
components.

Another concern with composition is that, although each unit is sim-
ple and (hopefully) easy to grasp, the combination of all the pieces might
result in a complicated and difficult-to-understand whole.

Is it really better to choose composition over inheritance?
In simple terms, Yes, but not in the way we always imagined. If we don’t

have a compelling need to use inheritance, we should aim toward com-
position. When inheritance is handled incorrectly or carelessly, it might
provide serious issues for the future or any developer to whom we will pass
over the project.

The composition creates fewer dependencies than inheritance and
assumes less about how the program will use in the future. Having stated
that, inheritance has significant characteristics that, when utilized appro-
priately, may deliver tremendous advantages.

Favoring Composition over Inheritance in Java (with Examples)

Composition over inheritance is an object-oriented programming para-
digm (OOP). Polymorphic behavior and code reuse should be achieved
using class composition rather than inheritance from a base or parent
class. The design concept states that composition should prefer over inher-
itance to provide more design flexibility.

Inheritance should be utilized only when a subclass is a superclass. Use
inheritance to avoid code repetition. If there is no “is a” connection, utilize
composition to reuse code.

28 ◾ Software Design Patterns: The Ultimate Guide

Arguments for Choosing Composition over Inheritance in Java and
OOP: One rationale for selecting composition over inheritance in Java
because Java does not enable multiple inheritances. Because Java only
allows us to extend one class, we’ll need Reader and Writer functionality
if we require various functionalities, such as reading and writing charac-
ter data into a file. Having them as private members simplifies our task,
known as composition.

Composition allows for more testing of a class than Inheritance. If one
class comprises another, we can simply create a Mock Object simulating
the combined class for testing purposes. This privilege is not passed down
via families.

Although both Composition and Inheritance enable us to reuse code,
Inheritance has the downside of breaking encapsulation. If the function
of the subclass is dependent on the activity of the superclass, it becomes
unstable. When the behavior of the superclass changes, the functionality
of the subclass might be broken without any adjustment on its side.

Several object-oriented Design Patterns outlined by GOF: Elements of
Reusable Object-Oriented Software support composition over inheritance
in the timeless classic Design Patterns. A famous example of this is the
strategy Design Pattern, in which composition and delegation are used to
alter the behavior of the context without affecting the context code. Because
context employs composition to carry strategy, it is straightforward to have
a new implementation of strategy at run-time rather than inheriting it.

Another advantage of composition over inheritance is flexibility. If you
utilize Composition, you have the flexibility to substitute a better and more
recent version of the Composed class implementation. The usage of the
comparator class, which gives properties for comparison, is one example.

Inheritance
In object-oriented programming, inheritance is the design method used to
establish a connection between objects. In Java, extends keyword is used to
implement inheritance.

class People {
 String titles;
 String names;
 int ages;
 }

Crash Course in Software Design Patterns ◾ 29

In the above example, The Employee “is” or “descends from” People. All
“is-a” connections are inheritance ties. The employee also shadows the
titles property from People, thus title will return the Employee’s titles
rather than the People’s.

Composition
The composition architecture technique in object-oriented programming
is used to execute a connection between objects. In Java, the composition
is accomplished by using instance variables from other objects.

 class Employee extends People {
 int salary;
 String titles;
 }

class People {
 String titles;
 String names;
 int ages;

 public Person(String titles, String names, String
ages) {
 this.titles = titles;
 this.names = names;
 this.ages = ages;
 }

 }

 class Employee {
 int salary;
 private Pople people;

 public Employee(People p, int salary) {
 this.people = p;
 this.salary = salary;
 }
 }

 People p = new People ("Mrs.", "Kashish", 23);
 Employee kapil = new Employee (p, 110000);

30 ◾ Software Design Patterns: The Ultimate Guide

The connection is often expressed as “has a” or “uses a.” A People are
present in the Employee class. It does not inherit from People, but rather
receives the People object as a parameter, which is why it “has” a People.

Composition over Inheritance
Assume we wish to build a Manager type, which results in the following
syntax, which is not permitted in Java (multiple inheritance is not permit-
ted in Java):

//Multiple inheritance is not permitted

Now, using the syntax below, we must prioritize composition above
inheritance:

IS INHERITANCE EXTINCT? A CLOSER LOOK
AT THE DECORATOR PATTERN
Inheritance was the primary technique used to enhance object capabilities
when object-oriented programming was introduced. Today, inheritance
is often seen as a design odor. Indeed, it has been shown that expand-
ing objects via inheritance often leads to an inflating class hierarchy.
Furthermore, multiple inheritance is not supported in some prominent
programming languages, like Java and C#, limiting the advantages of this
method.

The decorator pattern is a versatile alternative to inheritance for
expanding the functionality of objects. Multiple decorators may be piled
on top of one other in this style, each providing additional functionality.

class Manager extends People, Employee {
}

Class Manager {
 public string title;
 public Manager(Pople p, Employee e)
 {
 this.titles = e.titles;
 }
 }

Crash Course in Software Design Patterns ◾ 31

A decorator, unlike inheritance, may function on any implementation of
a given interface, eliminating the need to subclass a whole class hierar-
chy. Furthermore, using the decorator approach results in clean, testable
code.

Unfortunately, many of today’s software engineers are unfamiliar with
the decorator pattern. This is due in part to a lack of knowledge, but it is
also related to the fact that programming languages have not kept up with
the advancement of object-oriented design principles in a manner that
encourages developers to understand and utilize those patterns.

In this part, we will examine the advantages of utilizing the decora-
tor pattern over inheritance and argue that it should support natively in
object-oriented programming languages. In fact, we believe that the deco-
rator pattern should use more frequently than inheritance in clean and
tested programs.

Exploding Class Hierarchy

When the number of classes required to add additional functionality to
a given class hierarchy rises exponentially, the class hierarchy explodes.
Consider the following interface as an example:

If an email server request fails, the default implementation of EmailService
raises an exception. We’d want to improve the EmailService implementa-
tion such that unsuccessful queries are retried a few times before failing.
We’d also want to specify whether or not the implementation is thread-safe.

We can add optional retries and thread-safety capabilities to the
EmailService class itself. The class’s constructor would take arguments that
activate or disable each functionality. This method, however, violates both
the Single Responsibility Principle (since the EmailService would have addi-
tional jobs) and the Open-Closed Principle (because the class itself would
have to be modified for extension). Furthermore, the EmailService class
may be included in a third-party package that we are unable to modify.

public interface IEmailService
{
 void send(Email email);
 Collection<EmailInfo> listsEmail(int indexBegin, int
indexEnd);
 Email downloadEmail(EmailInfo emailInfo);
}

32 ◾ Software Design Patterns: The Ultimate Guide

Inheritance is a frequent way to expand a class without altering it. A
derived class inherits the attributes and behavior of its parent and may
possibly expand or override parts of its functionality. In the EmailService
example, we may develop three subclasses: one that adds retries, one that
adds thread-safety, and one that incorporates both features. The class
structure would be as follows:

Structure of class.

It should be noted that the ThreadSafeEmailServiceWithRetries might
also derive from EmailServiceWithRetries or ThreadSafeEmailService (or
both if multiple inheritance is supported). The number of classes, though,
and the consequent functionality, would be comparable.

In addition to retries and thread safety, we’d like to add logging to
our email service API as an option. We utilize inheritance once more to
increase the class hierarchy, which becomes as follows:

Extended structure of class.

Crash Course in Software Design Patterns ◾ 33

It is worth mentioning that number of extra classes required for adding
logging functionality is equal to the entire number of classes in the current
hierarchy.

To the Rescue Comes the Decorator Pattern

Instead of inheritance, the decorator approach enhances object capabili-
ties through composition. It solves the problem of ballooning class hierar-
chy by requiring only one decorator for each new feature. As an example,
let’s make a decorator for the retries functionality. A basic for loop with
three retries is employed for simplicity. The EmailServiceRetryDecorator
looks like this:

It is worth noting that the constructor of EmailServiceRetryDecorator
accepts a reference to IEmailService, which can any implementation of
IEmailService (including the decorator itself). This totally decouples the
decorator from individual IEmailService implementations, increasing its

public class EmailServiceRetryDecorator implements
IEmailService
{
 private final IEmailService emailService;

 public EmailServiceRetryDecorator(IEmailService
emailService) {
 this.emailService = emailService;
 }

 @Override
 public void send(Email email) {
 executeWithRetries(() -> emailService.send(email));
 }

 @Override
 public Collection<EmailInfo> listsEmail(int indexBegin,
int indexEnd) {
 final List<EmailInfo> emailInfos = new
ArrayList<>();
 executeWithRetries(() -> emailInfos.
addAll(emailService.listsEmail(indexBegin, indexEnd)));
 return emailInfos;
 }

 @Override

34 ◾ Software Design Patterns: The Ultimate Guide

reusability and reliability. Likewise, decorators for thread safety, logging,
and caching can be created.

Decorator structure of class.

Decorators Queue

At first look, it may appear that the decorator pattern can only add one func-
tionality to a particular implementation. The options are unlimited, though,
because decorators may be piled on top of one other. For example, we can
develop a dynamic equivalent to the EmailServiceWithRetriesAndCaching
that we established through inheritance as follows:

Furthermore, by rearranging decorators or utilizing the same decorator at
various levels, we may design novel implementations that would be impos-
sible to develop using inheritance. For example, we may log before and
after retries as follows:

The status of the request before and after retries will note with this com-
bination. This enables verbose logging, which may be utilized for trouble-
shooting or creating complex dashboards.

IEmailService emailServiceWithRetriesAndCaching = new
EmailServiceCacheDecorator(

IEmailService emailService = new EmailServiceLoggingDecorat
or(new EmailServiceRetryDecorator(

Crash Course in Software Design Patterns ◾ 35

Testability

Another significant advantage of the decorator over inheritance is testabil-
ity. Consider building a unit test for the retries functionality as an example.

Because there is no means for replacing a parent class with a stub, we
cannot test EmailServiceWithRetries in isolation from its parent class
(EmailService) (also known as mocking). Furthermore, since EmailService
makes network connections to a backend server, unit testing all of its sub-
classes becomes tough (because network calls are often slow and unreli-
able). In such instances, integration tests are often used instead of unit
tests.

However, since the EmailServiceRetryDecorator constructor requires
a reference to IEmailService, the decorated object may be simply substi-
tuted with a stub implementation (i.e., mock). This allows you to test the
retry functionality in isolation, which inheritance does not allow. As an
example, consider writing a unit test that confirms that at least one retry
is completed.

In contrast to an integration test, which would rely on the development
of EmailService and remote service calls, this test is simple, rapid, and
consistent.

Other Advantages

The decorator pattern helps developers to produce code that conforms to
the SOLID design principles in addition to reducing the class hierarchy and
enhancing testability. Indeed, the decorator technique is used to provide
new functionality to new focused objects (Single Responsibility Principle)
without altering old classes (Open-Closed Principle). Furthermore, since
decorators rely on abstractions rather than concretions, the decorator pat-
tern supports the usage of dependency inversion (which has several advan-
tages such as loose coupling and durability).

// Create mock that fails first time and then succeed
IEmailService mock = mock(IEmailService.class);
when(mock.downloadEmail(emailInfo))
 . thenThrow(new EmailServiceTransientError())
 . thenReturn(email);

EmailServiceRetryDecorator decorator = new
EmailServiceRetryDeco

36 ◾ Software Design Patterns: The Ultimate Guide

Drawbacks

Despite the fact that the decorator pattern has several benefits over the
alternatives (inheritance or changing existing classes), it has a few limita-
tions that are preventing its widespread adoption.

The decorator class must implement all methods in the decorated inter-
face, which is a recognized disadvantage of this style. Methods that do not
provide any new behavior must, in reality, be implemented as forwarding
methods in order to preserve current behavior. In contrast, inheritance
only requires subclasses to provide methods that alter or extend the parent
class’s functionality.

Consider the following IProcess interface and develop a decorator for it
to demonstrate the difficulty of forwarding methods.

If the process fails to start, the default implementation of the start method
throws a FailedToStartProcessException. We’d want to modify the default
implementation such that launching the process is attempted three
times before failing. The decorator pattern would use in the following
implementation:

public interface IProcess
{
 void start(String args);
 void kills();
 ProcessInfo getInfo();
 ProcessStatus getStatus();
 ProcessStatistics getStatistics();
}

public class RetryStartProcess implements IProcess
{
 private IProcess process;

 public RetryStartProcess(IProcess process) {
 this.process = process;
 }

 @Override
 public void start(String args) {
 for(int c=0; c<3; ++c) {
 try {

Crash Course in Software Design Patterns ◾ 37

It’s worth noting that this approach has a lot of boilerplate code. In fact,
the only significant element of the code is the implementation of the start
method. Such boiler-plate might be viewed as a productivity and mainte-
nance burden for interfaces with multiple methods.

Another disadvantage of the decorator pattern is its low popularity,
particularly among junior developers. In reality, being less popular fre-
quently implies more difficulty to grasp, which might result in a longer
development period.

Decorator Pattern Has Native Support

Both of the disadvantages highlighted in the preceding section may be
solved if the decorator pattern has native support in object-oriented
programming languages (similar to what is provided today for inheri-
tance). Indeed, with such native support, forwarding methods would be
unnecessary, and the decorator pattern would be simpler to implement.
Furthermore, native support for the decorator pattern would undoubtedly
expand its popularity and use.

The addition of native support for the Observer pattern in C# is a
nice illustration of how computer languages may inf luence the adop-
tion of Design Patterns (also known as events). To transmit events
across loosely connected classes, today’s C# developers (including
junior ones) readily employ the Observer design. Many developers
would build direct dependencies between classes to transmit events
if events did not exist in C#, resulting in code that is less reusable
and more difficult to verify. Likewise, native support for the decora-
tor pattern would encourage developers to design decorators rather to
modifying existing classes or erroneously using inheritance, leading in
higher code quality.

 process.start(args);
 } catch (FailedToStartProcessException e) {
 continue;
 }
 break;
 }

38 ◾ Software Design Patterns: The Ultimate Guide

The following implementation shows what native decorator support in
Java might look like:

The decorated keyword is used instead of implements, and the decorated
field is used to access the decorated object. To make this work, the dec-
orator’s default constructor would need to accept an IProcess argument
(which will handle at the language level much like parameter-less default
constructors are handled today). As we can see, such native support will
eliminate boiler-plate and make the decorator pattern as simple to imple-
ment as inheritance (if not easier).

Abstract Decorator

If, like us, we frequently utilize the decorator pattern and end up with sev-
eral decorators for each interface, there is a way we can use to reduce the
boilerplate of forwarding procedures (in the meantime until native sup-
port for decorator pattern becomes available). The solution is to create an
abstract decorator that implements all methods as forwarding methods and
derive (inherit) all decorators from it. Only decorated methods will need
to reimplement since forwarding methods are inherited from the abstract
decorator. This solution makes use of the native inheritance capabilities to
implement the decorator pattern. The code below exemplifies this method.

public abstract class AbstractProcessDecorator implements
IProcess
{
 protected final IProcess process;

public class RetryStartProcess decorates IProcess
{
 @Override
 public void start(String args) {
 for(int c=0; c<3; ++c) {
 try {
 decorated.start(args);
 } catch (FailedToStartProcessException e) {
 continue;
 }
 break;
 }
 }
}

Crash Course in Software Design Patterns ◾ 39

One disadvantage of this technique is that decorators cannot inherit from
other classes (for languages that do not enable multiple inheritance).

When Should We Use Inheritance?

Although we feel that the decorator pattern should prefer over inheri-
tance where feasible, inheritance is more appropriate in certain instances.

 protected AbstractProcessDecorator(IProcess process) {
 this.process = process;
 }

 public void start(String args) {
 process.start(args);
 }

 public void kill() {
 process.kill();
 }

 public ProcessInfo getInfo() {
 return process.getInfo();
 }

 public ProcessStatus getStatus() {
 return process.getStatus();
 }

 public ProcessStatistics getStatistics() {
 return process.getStatistics();
 }

public class RetryStartProcess extends AbstractProcessDecorator
{
 public RetryStartProcess(IProcess process) {
 super(process);
 }

 @Override
 public void start(String args) {
 for(int c=0; c<3; ++c) {
 try {
 process.start(args);
 } catch (FailedToStartProcessException e) {
 continue;
 }
 break;

40 ◾ Software Design Patterns: The Ultimate Guide

A decorator would be tough to build when derived classes need to access
nonpublic fields or methods in the parent class. Decorators do not have
access to attributes or methods that are exclusive to one implementation or
another since they are only aware of the public interface.

As a general rule, if our subclass exclusively relies on its parent’s public
interface, it’s a sign that we should use a decorator instead. It would be
fantastic if static analysis tools proposed that inheritance be replaced with
a decorator in such circumstances.

KEY POINTS

• When feasible, the decorator pattern is preferred over inheritance.

• The decorator approach solves the issue of inheritance’s expanding
class hierarchy. The resultant class hierarchy is straightforward and
scales linearly when the decorator pattern is used.

• Decorators may be tested separately from decorated objects; how-
ever, subclasses cannot be tested apart from their parents. If the par-
ent class is difficult to unit test (e.g., because it makes remote calls),
its descendant classes inherit this problem. On the other hand,
Decorators may be unit tested independently since they only rely on
the interface of decorated objects (injected through the decorator
class’s constructor).

• The decorator pattern helps developers to produce code that follows
SOLID design principles.

• The decorator pattern would be more straightforward and more
widely adopted if it were supported natively in object-oriented pro-
gramming languages.

In this chapter, we discussed Software Design Patterns, major concepts,
benefits, and drawbacks of these methods.

41DOI: 10.1201/9781003308461-2

C h a p t e r 2

Factory Pattern

IN THIS CHAPTER

 ➢ What is Factory Pattern?

 ➢ Real-world examples

 ➢ Why is Factory Pattern useful?

 ➢ Advantages/disadvantages

 ➢ Implementation in Python

 ➢ UML diagram

We discussed software design and its ideas in the previous chapter. This
chapter will explain the Factory Pattern and provide an example of how
one might use it.

FACTORY METHOD
The Factory Pattern is a Creational Design Pattern, which means it is
concerned with the creation of objects. In the Factory design, we gen-
erate objects without disclosing the creation mechanism to the client,
and the client creates new types of objects using the same standard
interface.

The goal is to employ a static member-function (static Factory Pattern)
that builds and returns instances while keeping class module information
hidden from the user.

https://doi.org/10.1201/9781003308461-2

42 ◾ Software Design Patterns: The Ultimate Guide

A Factory Pattern is one of the key design ideas for creating an object,
allowing clients to generate library objects in a way that isn’t tightly cou-
pled with the library’s class hierarchy.

What exactly do we mean when saying “library” and “clients”?
A library is given by a third party and exposes some public APIs to

which clients make calls to perform their jobs. Different types of views
supplied by Android OS are a simple illustration.

UML FOR FACTORY METHOD

UML for Factory Pattern Method.

PATTERNS FOR FACTORY PATTERN DESIGN
A Factory Design Pattern is a form of Creational Design Pattern that allows
us to build an object to instantiate by using an interface or a class. The fac-
tory is the most efficient approach to constructing an object. Objects are
produced in this method without providing the reasoning to the client.
The client utilizes the same standard interface to construct a new object
type.

Problem

Assume we intend to build a website that sells books in various parts
of the country. The website’s first edition only accepts book orders, but

Factory Pattern ◾ 43

as time passes and our website grows in popularity, we will not add
additional things to sales, such as clothing and footwear. It’s an excel-
lent concept, but what about the software developers? Now they must
update the entire codebase because most of the code is involved with
the book’s class, and they must alter the entire codebase. It may result
in a messy code.

Let’s look at another example to comprehend this concept further:

Python Code for the Object
Oriented Concepts without
using the Factory method

class FrenchLocalizer:

 """ it simply returns the french version """

 def __init__(self):

 self.translations = {"Scooter": "voiture", "car":
"bicyclette",
 "bike":"cyclette"}

 def localize(self, message):

 """change message using translations"""
 return self.translations.get(msg, msg)

class SpanishLocalizer:
 """it simply returns the spanish version"""

 def __init__(self):

 self.translations = {"scooter": "coche", "car":
"bicicleta",
 "bike":"ciclo"}

 def localize(self, msg):

 """change message using translations"""
 return self.translations.get(msg, msg)

class EnglishLocalizer:
 """Simply return same message"""

 def localize(self, msg):
 return msg

44 ◾ Software Design Patterns: The Ultimate Guide

Let’s look at how we can address challenges like these.

Solution

Instead of utilizing straightforward object building, we utilize the specific
Factory Pattern in the solution to invoke the construction object. Both
methods of producing objects are pretty similar, yet they are referred to
within the Factory function.

For example, our selling products, such as Books, Mobiles, Clothes, and
Accessories, should have a purchasing interface that declares a method
buy. These methods will implement differently in each class.

Let’s look at the diagram below to get a better understanding of it.

Solution using the factory design pattern

class French_Language:

 #it'll return the french version

 def __init__(self):

 self.translations = {"books": "voiture", "phoneno":
"biclothtte",
 "cloths":"clothtte"}

if __name__ == "__main__":

 # the main method to call others
 f = FrenchLocalizer()
 e = EnglishLocalizer()
 s = SpanishLocalizer()

 # list of the strings
 message = ["Scooter", "car", "bike"]

 for msg in message:
 print(f.localize(msg))
 print(e.localize(msg))
 print(s.localize(msg))

Factory Pattern ◾ 45

 def localize(self, message):

 """change message using translations"""
 return self.translations.get(msg, msg)

class Spanish_Language:
 #it will return the spanish version

 def __init__(self):
 self.translations = {"books": "libro", "phoneno":
"teléfono",
 "cloths":"paño"}

 def localize(self, msg):

 #change message using translations
 return self.translations.get(msg, msg)

class English_Language:
 """Simply return the same message"""

 def localize(self, msg):
 return msg

def Factory(language ="English"):

 """Factory-Method"""
 localizers = {
 "German": German_Language,
 "English": English_Language,
 "French": French_Language,
 }

 return localizers[language]()

if __name__ == "__main__":

 fr = Factory("German")
 en = Factory("English")
 sp = Factory("French")

 message = ["books", "phoneno", "cloths"]

 for m1 in message:
 print(fr.localize(m1))
 print(en.localize(m1))
 print(sp.localize(m1))

46 ◾ Software Design Patterns: The Ultimate Guide

ADVANTAGES OF USING THE FACTORY PATTERN
The benefits of the factory technique are listed below:

• Factory methods are convenient for introducing new sorts of prod-
ucts without redistributing the current client code.

• It prevents close coupling between the products and creator classes
and objects.

DRAWBACKS OF USING THE FACTORY PATTERN METHOD
The drawbacks of employing Factory techniques are listed below:

• It will create a massive number of tiny files or the cluttering of the
files.

• The client may use the subclass to construct a specific real product
object.

APPLICABILITY
Its principle is similar to polymorphism in that no modifications to the
client code are required. Assume we wish to draw various forms such as
rectangles, squares, circles, etc. The Factory Pattern Method may use to
build the instance based on the user’s input.

We can book a 1-wheeler, 2-wheeler, 3-wheeler, and 4-wheeler in a taxi
application. The customer may book any of the rides he wishes from this
page. We may construct a class called Booking with the aid of the Factory
function, which will allow us to generate an instance that accepts the user’s
input. As a result, the developer does not need to alter the complete code to
implement the new feature.

The Factory method removes the difficult-to-preserve complex logical
code. It also inhibits us from making changes to the codebase since alter-
ing existing code might produce subtle flaws and cause behavior to change.

USES OF THE FACTORY DESIGN PATTERN

• When a class does not know what subclasses it must generate.

• When a class wants its subclasses to indicate the objects that will
produce.

• When the parent classes opt to create objects for their subclasses.

Factory Pattern ◾ 47

WHEN SHOULD WE UTILIZE FACTORY PATTERN METHODS?
First, we must determine the instances in which the Factory technique
may be used. It may be utilized when an application relies on an interface
(product) to perform a job and there are several actual implementations of
that stated interface.

The Factory technique may be used to tackle a wide range of issues. We
describe a few examples that fulfill this definition.

Complex Logical Code Is Being Replaced

In general, the code contains logic such as if/else/elif that is difficult to
maintain owing to the addition of new routes when certain needs change.

Using the Factory technique, we can insert the body of each logical route
into the many declared functions or classes that have a common interface.
The developer may offer the modification’s concrete implementation.

Bringing Together Related Functions under a Single Interface

Assume we want to apply a certain filter on a picture. The Factory Pattern
Method will discover the specific filter according to the user input. The
real implementation may be used via the Factory Pattern Method.

Multiple Implementations of the Same Functionality Are Supported

A group of scientists requires conversions of the satellite photos from
one coordinate system to another. A system, on the other hand, contains
several algorithms to execute the various levels of change. The program
may enable the user to pick an optimum algorithm. Factory method may
implement firmly algorithm depending on this option.

Integrating External Series That Are Linked

A video streaming application aims to integrate the many external provid-
ers. The tool gives the users to identify where their video originates from.
The Factory method provides the proper integration depending on a user’s
choice.

PROBLEMS WE CONFRONT IN THE ABSENCE
OF THE FACTORY METHOD
Assume we have our own business that offers ridesharing in various
regions of the nation. The app’s original version only offers two-wheeler
ridesharing, but as time passes, our service grows in popularity, and we
now want to include three and four-wheeler ridesharing as well.

48 ◾ Software Design Patterns: The Ultimate Guide

That’s fantastic news, but what about our startup’s software developers?
They must alter the whole codebase since the majority of the code is now
connected with the two-wheeler class, and developers must make modifi-
cations to the entire codebase.

After completing all of these adjustments, the developers are left with
either a jumbled code or a resignation letter.

DISCUSSION
The Factory Method is used to create things, while the Template Method is
used to implement an algorithm. A superclass describes all standard and
general behavior (using pure virtual “placeholders” for creation stages)
and then delegated the creation details to client-supplied subclasses.

The Factory Pattern Method makes a design more adaptable while also
making it somewhat more difficult. Other Design Patterns need the cre-
ation of new classes, while the Factory Pattern Method just necessitates the
creation of a new action.

People often use the Factory Method to generate objects; however, it
isn’t required if: the class that’s instantiated never changes, or instantia-
tion occurs in an action that subclasses may readily override (such as an
initialization operation).

The Factory Pattern Method is comparable to the Abstract Factory,
except it does not place as much focus on families.

Factory Methods are often described by an architectural framework
and then implemented by the framework’s user.

GENERAL GUIDELINES
Abstract Factory classes are often created with Factory Methods, although
they may also be done using Prototype.

Factory Methods are often invoked from inside Template Methods.
Inheritance is used to create objects in the Factory Method. Delegation

is used to create prototypes.
Typically, designs begin with the Factory Method (less difficult, more

adaptable, subclasses proliferate) and progress to the Abstract Factory,
Prototype, or Builder (more flexible, more complex) when the designer
realizes where more flexibility is required.

Although prototyping does not need subclassing, it does require an initialize
action. Factory Method necessitates subclassing but does not need to initialize.

A Factory Method offers the advantage of repeatedly returning the same
instance or of returning a subclass instead of an object of the same type.

Factory Pattern ◾ 49

Some Factory Method proponents argue that all constructors should
be private or protected as a matter of language design (or, failing that, as
a matter of style). It is none of your concern whether a class creates a new
object or recycles an old one.

The new operator is seen as hazardous. There is a distinction between
requesting and generating an item. The new operator always returns an
object and does not contain object creation. A Factory Method ensures
such encapsulation, allowing an object to be requested without being inex-
tricably linked to the process of production.

Examples of Real-World Applications of the Factory Pattern
Method Design in Java

This Design Pattern is extensively used in JDK, for example, the java.util.
getInstance() function.

The Factory Pattern Method Design is used by Calendar, NumberFormat,
and ResourceBundle.

Calculate An Electricity Bill: A Real-World Application
of the Factory Method in Java

• Step 1: Create an abstract class called Plan.

• Step 2: Create concrete classes that extend the abstract Plan class.

import java.io.*;
abstract class Plan{
 protected double rate;
 abstract void getRate();

 public void calculateBills(int units){
 System.out.println(units*rate);
 }
}//end of the Plan class

class DomesticPlan extends Plan{
 //@override
 public void getRate(){
 rate=4.50;
 }
}//end of the DomesticPlan class.

50 ◾ Software Design Patterns: The Ultimate Guide

• Step 3: Create a GetPlanFactory to produce concrete class objects
depending on the information provided.

• Step 4: Create a bill by calling GetPlanFactory and giving information
such as the kind of plan (DOMESTICPLAN, COMMERCIALPLAN,
or INSTITUTIONALPLAN) to it.

class InstitutionalPlan extends Plan{
//@override
public void getRate(){
 rate=4.50;
}
/end of the InstitutionalPlan class.

class GetPlanFactory{

 //use the getPlan method to get object of the type
Plan
 public Plan getPlan(String planType){
 if(planType == null){
 return null;
 }
 if(planType.equalsIgnoreCase("DOMESTIC-PLAN")) {
 return new DomesticPlan();
 }
 else if(planType.
equalsIgnoreCase("COMMERCIAL-PLAN")){
 return new CommercialPlan();
 }
 else if(planType.
equalsIgnoreCase("INSTITUTIONAL-PLAN")) {
 return new InstitutionalPlan();
 }
 return null;
 }
}//end of the GetPlanFactory class

class CommercialPlan extends Plan{
//@override
public void getRate(){
 rate=7.50;
}
/end of the CommercialPlan class.

Factory Pattern ◾ 51

A Real-World Example of the Factory Design Pattern in C#

Assume we have three distinct cards, MoneyBack, Titanium, and Platinum,
all of which implement the abstract class CreditCard. We must instantiate
one of these classes, but we do not know which one; this is determined by
the user.

The following classes and objects are represented in the above class
diagram:

• Product: CreditCard

• ConcreteProduct: MoneyBackCreditCard, TitaniumCreditCard,
PlatinumCreditCard

• Creator: CardFactory

• ConcreteCreator: MoneyBackCardFactory, TitaniumCardFactory,
PlatinumCardFactory

import java.io.*;
class GenerateBill{
 public static void main(String args[])throws
IOException{
 GetPlanFactory planFactory = new GetPlanFactory();

 System.out.print("Enter name of plan for which bill
will generate: ");
BufferedReader br=new BufferedReader(new
InputStreamReader(System.in));

 String planName=br.readLine();
 System.out.print("Enter number of units for bill will
calculate: ");
 int units=Integer.parseInt(br.readLine());

 Plan p1 = planFactory.getPlan(planName);
 //call getRate() method and calculateBill()method of
the DomesticPaln.

 System.out.print("Bill amount for "+p1lanName+"
of "+units+" units is: ");
 p1.getRate();
 p1.calculateBill(units);
 }
 }//end of the GenerateBill class

52 ◾ Software Design Patterns: The Ultimate Guide

The code blocks for each participant are listed below:

1. Product

2. ConcreteProduct
MoneyBackCreditCard:

namespace FactoryMethodDesignPatternInCSharp
{
 /// <summary>
 /// 'Product' Abstract Class
 /// </summary>
 abstract class CreditCard
 {
 public abstract string CardType { get; }
 public abstract int CreditLimit { get; set; }
 public abstract int AnnualCharge { get; set; }
 }
}

using System;

namespace FactoryMethodDesignPatternInCSharp
{
 /// <summary> 'ConcreteProduct' class </summary>
 class MoneyBackCreditCard : CreditCard
 {
 private readonly string _cardType;
 private int _creditLimit;
 private int _annualCharge;

 public MoneyBackCreditCard(int creditLimit,
int annualCharge)
 {
 _cardType = "MoneyBack";
 _creditLimit = creditLimit;
 _annualCharge = annualCharge;
 }

 public override string CardType
 {
 get { return _cardType; }
 }

 public override int CreditLimit
 {

Factory Pattern ◾ 53

TitaniumCreditCard:

 get { return _creditLimit; }
 set { _creditLimit = value; }
 }

 public override int AnnualCharge
 {
 get { return _annualCharge; }
 set { _annualCharge = value; }
 }
 }
}

using System;

namespace FactoryMethodDesignPatternInCSharp
{
 /// <summary>
 /// 'ConcreteProduct' class </summary>
 class TitaniumCreditCard : CreditCard
 {
 private readonly string _cardType;
 private int _creditLimit;
 private int _annualCharge;

 public TitaniumCreditCard(int creditLimit, int
annualCharge)
 {
 _cardType = "Titanium";
 _creditLimit = creditLimit;
 _annualCharge = annualCharge;
 }

 public override string CardType
 {
 get { return _cardType; }
 }

 public override int CreditLimit
 {
 get { return _creditLimit; }
 set { _creditLimit = value; }
 }

 public override int AnnualCharge

54 ◾ Software Design Patterns: The Ultimate Guide

PlatinumCreditCard:

 {
 get { return _annualCharge; }
 set { _annualCharge = value; }
 }
 }
}

using System;

namespace FactoryMethodDesignPatternInCSharp
{
 /// <summary> A 'ConcreteProduct' class </summary>
 class PlatinumCreditCard : CreditCard
 {
 private readonly string _cardType;
 private int _creditLimit;
 private int _annualCharge;

 public PlatinumCreditCard(int creditLimit, int
annualCharge)
 {
 _cardType = "Platinum";
 _creditLimit = creditLimit;
 _annualCharge = annualCharge;
 }

 public override string CardType
 {
 get { return _cardType; }
 }

 public override int CreditLimit
 {
 get { return _creditLimit; }
 set { _creditLimit = value; }
 }

 public override int AnnualCharge
 {
 get { return _annualCharge; }
 set { _annualCharge = value; }
 }
 }
}

Factory Pattern ◾ 55

3. Creator

4. ConcreteCreator
MoneyBackFactory:

TitaniumFactory:

namespace FactoryMethodDesignPatternInCSharp
{
 /// <summary> 'Creator' Abstract Class </summary>
 abstract class CardFactory
 {
 public abstract CreditCard GetCreditCard();
 }
}

namespace FactoryMethodDesignPatternInCSharp
{
 /// <summary> 'ConcreteCreator' class </summary>
 class MoneyBackFactory : CardFactory
 {
 private int _creditLimit;
 private int _annualCharge;

 public MoneyBackFactory(int creditLimit, int
annualCharge)
 {
 _creditLimit = creditLimit;
 _annualCharge = annualCharge;
 }

 public override CreditCard GetCreditCard()
 {
 return new MoneyBackCreditCard(_
creditLimit, _annualCharge);
 }
 }
}

namespace FactoryMethodDesignPatternInCSharp
{
 class TitaniumFactory: CardFactory

56 ◾ Software Design Patterns: The Ultimate Guide

PlatinumFactory:

 {
 private int _creditLimit;
 private int _annualCharge;

 public TitaniumFactory(int creditLimit, int
annualCharge)
 {
 _creditLimit = creditLimit;
 _annualCharge = annualCharge;
 }

 public override CreditCard GetCreditCard()
 {
 return new TitaniumCreditCard(_
creditLimit, _annualCharge);
 }
 }
}

namespace FactoryMethodDesignPatternInCSharp
{
 class PlatinumFactory: CardFactory
 {
 private int _creditLimit;
 private int _annualCharge;

 public PlatinumFactory(int creditLimit, int
annualCharge)
 {
 _creditLimit = creditLimit;
 _annualCharge = annualCharge;
 }

 public override CreditCard GetCreditCard()
 {
 return new PlatinumCreditCard(_
creditLimit, _annualCharge);
 }
 }
}

Factory Pattern ◾ 57

Client Factory Pattern Example

This chapter covered Factory Method, where we discussed Factory Design,
problems, advantages, and disadvantages. We also discussed the UML
diagram, general guidelines, and applicability.

using System;

namespace FactoryMethodDesignPatternInCSharp
{
 /// <summary> Factory Pattern Demo </summary>
 public class ClientApplication
 {
 static void Main()
 {
 CardFactory factory = null;
 Console.Write("Enter card type we would
like to visit: ");
 string car = Console.ReadLine();

 switch (car.ToLower())
 {
 case "moneyback":
 factory = new
MoneyBackFactory(50000, 0);
 break;
 case "titanium":
 factory = new
TitaniumFactory(100000, 500);
 break;
 case "platinum":
 factory = new
PlatinumFactory(500000, 1000);
 break;
 default:
 break;
 }

 CreditCard creditCard = factory.
GetCreditCard();
 Console.WriteLine("\nYour card details are
below : \n");
 Console.WriteLine("Card Type: {0}\nCredit
Limit: {1}\nAnnual Charge: {2}",
 creditCard.CardType, creditCard.
CreditLimit, creditCard.AnnualCharge);
 Console.ReadKey();
 }
 }
}

https://taylorandfrancis.com

59DOI: 10.1201/9781003308461-3

C h a p t e r 3

Observer Pattern

IN THIS CHAPTER

 ➢ What is Observer Pattern?

 ➢ Real-world examples

 ➢ Why is Observer Pattern useful?

 ➢ Advantages/disadvantages

 ➢ Implementation in Python

 ➢ UML diagram

In the previous chapter, we covered Factory Method Pattern in Software
Design Pattern. In this chapter, we will discuss Observer Pattern, discuss-
ing real-life examples, advantages, and disadvantages. We will also cover
implementation and UML.

The Observer Pattern is a Behavioral Design Pattern that lets us estab-
lish or create a subscription mechanism to notify numerous objects of each
new event that occurs to the object they are viewing. Multiple objects are
essentially watching the topic. The topic must observe, and the observers
are alerted anytime there is a change in the subject. This pattern provides
one-to-many dependencies between items, such that when one object
changes state, all of its dependents are immediately alerted and changed.

https://doi.org/10.1201/9781003308461-3

60 ◾ Software Design Patterns: The Ultimate Guide

PARTICIPANTS IN DESIGN
Four people are involved in the Observer Pattern.

• Subject: Subject is an interface or abstract class that defines
the procedures for attaching and detaching observers from the
subject.

• ConcreteSubject: It is a class that represents a concrete subject. It
keeps track of the object’s status and tells the linked Observers when
it changes.

• Observer: An interface or abstract class that defines the methods uti-
lized to notify this object.

• ConcreteObserver: Concrete implementations of the Observer.

A PROBLEM
Assume we want to design a calculator application with many capa-
bilities such as addition, subtraction, changing the basis of the num-
bers to hexadecimal or decimal, and many more. However, one of
our pals is interested in altering the basis of his favorite number to
Octal, and we are still working on the program. So, what may be the
solution? Should our buddy check the application every day to see
what the status is? But don’t we think that would result in many extra
trips to the application that wasn’t really necessary? Alternatively, we
might consider it each time we introduce a new feature and send a
reminder to each user. Is it all right? Yes, but not all of the time. Some
consumers may be upset by a large number of needless alerts that
they do not want.

SOLUTION BASED ON THE OBSERVER PATTERN
Let’s talk about how to solve the situation indicated above. Here comes
the subject into the spotlight. However, it also informs the other objects,
which is why it is often referred to as the Publisher. Subscribers are all
objects that desire to follow changes in the publisher’s state.

Observer Pattern ◾ 61

Solution of Observer Pattern.

class Subject:

 """ Describes what is being seen"""

 def __init__(self):

 """create empty observer list"""

 self._observers = []

 def notify(self, modifier = None):

 """Alert observers"""

 for observer in self._observers:
 if modifier != observer:
 observer.update(self)

 def attach(self, observer):

 """If observer is not in list,
 append it into the list"""

 if observer not in self._observers:
 self._observers.append(observer)

 def detach(self, observer):

 """Remove observer from observer list"""

62 ◾ Software Design Patterns: The Ultimate Guide

 try:
 self._observers.remove(observer)
 except ValueError:
 pass

class Data(Subject):

 """monitor object"""

 def __init__(self, name =''):
 Subject.__init__(self)
 self.name = name
 self._data = 0

 @property
 def data(self):
 return self._data

 @data.setter
 def data(self, value):
 self._data = value
 self.notify()

class HexViewer:

 """updates Hewviewer"""

 def update(self, subject):
 print('HexViewer: Subject {} has data 0x{:x}'.
format(subject.name, subject.data))

class OctalViewer:

 """updates Octal viewer"""

 def update(self, subject):
 print('OctalViewer: Subject' + str(subject.name) +
'has data '+str(oct(subject.data)))

class DecimalViewer:

 """updates Decimal viewer"""

 def update(self, subject):

Observer Pattern ◾ 63

CLASS DIAGRAM

Class Diagram of Observer Pattern.

 print('DecimalViewer: Subject % s has data % d' %
(subject.name, subject.data))

"""main function"""

if __name__ == "__main__":

 """provide data"""

 obj1 = Data('Data 1')
 obj2 = Data('Data 2')

 view1 = DecimalViewer()
 view2 = HexViewer()
 view3 = OctalViewer()

 obj1.attach(view1)
 obj1.attach(view2)
 obj1.attach(view3)

 obj2.attach(view1)
 obj2.attach(view2)
 obj2.attach(view3)

 obj1.data = 20
 obj2.data = 25

64 ◾ Software Design Patterns: The Ultimate Guide

ADVANTAGES

• Open/Closed Principle: Providing subscriber classes in the Observer
Pattern is simpler than in others since no changes to the client’s code
are required.

• Establishes Relationships: Building relationships between objects at
runtime is quite simple.

• It thoroughly specifies the connection that exists between the objects
and the observer. As a result, there is no need to edit the Subject to
add or delete observers.

DISADVANTAGES

• Memory Leakage: Memory leaks are produced by the Lapsed Listener
Problem due to explicit observer registration and unregistration.

• Random Notifications: Notifications are provided to all subscribers
in a random sequence.

• Risky Implementations: If the pattern is not implemented correctly,
there is a good risk that we will wind up with a high-complexity
code.

APPLICABILITY

• Multi-Dependency: This pattern should be used when numerous
objects are dependent on the state of one object since it gives a tidy
and well-tested design for the same.

• Receiving Notifications: It is utilized in social media, RSS feeds, and
email subscriptions where we may follow or subscribe and get the
most recent notice.

• Object Reflections: When we do not closely link the objects, each
change in state in one object must reflect in another.

USAGE

• When the status of one item must be mirrored in another without
the objects remaining tightly connected.

Observer Pattern ◾ 65

• When we build a framework that has to be updated in the future with
new observers with minimal changes.

OBSERVER PATTERN’S PURPOSE

• The Observer pattern is used to alert interested observers of a
change. We can add and delete observers at any point throughout
the execution.

• As an example, we have a color selection form. We must update the
complete application for each color change. There will be observers
listening to the color change event to keep themselves updated.

INTENT
Define a one-to-many dependence between objects such that when one
object changes state, all of its dependents are immediately alerted and
changed.

In a Subject abstraction, encapsulate the core (or standard or engine)
components, and in an Observer hierarchy, the variable (or optional or
user interface) components.

Model-View-“View” Controller’s component.

PROBLEM
A vast monolithic architecture does not scale effectively because addi-
tional graphing or monitoring needs are imposed.

DISCUSSION
Create an object that serves as the “keeper” of the data model and business
logic (the Subject). Delegate all “view” behavior to be discrete and decou-
pled Observer objects. As they are generated, Observers register with the
Subject. When the Subject changes, it broadcasts the change to all regis-
tered Observers, and each Observer requests the Subject for the subset of
the Subject’s state that it is responsible for monitoring.

This enables the number and “type” of “view” objects to be dynamically
defined rather than statically provided at compilation time.

The protocol as mentioned above defines a “pull” interaction paradigm.
Rather than the Subject “pushing” what has changed to all Observers,
each Observer is in charge of “drawing” its own “window of interest” from
the Subject. The “push” paradigm reduces reuse, but the “pull” model is
inefficient.

66 ◾ Software Design Patterns: The Ultimate Guide

Implementing event compression (only sending a single change broad-
cast after a series of consecutive changes has occurred), having a single
Observer monitor multiple Subjects, and ensuring that a Subject notifies
its Observers when it is about to leave are all discussed left to the designer’s
discretion.

The Observer Pattern dominates the Model-View-Controller architec-
ture, which has been popular in the Smalltalk community for many years.

EXAMPLE
The Observer creates a one-to-many connection such that when one object
changes state, the others are alerted and updated automatically. Some auc-
tions show this trend. Each bidder carries a numbered paddle that is used
to signal a bid. The auctioneer begins the bidding and “observes” when a
paddle is raised to accept the bid. The acceptance of the bid modifies the
bid price, which is communicated to all bidders in the form of a new bid.

CHECKLIST

• Differentiate between the core functionality and the optional
functionality.

• Model the separate functionality using a “subject” abstraction.

• Model the dependent functionality via an “observer” structure.

• The Subject is connected exclusively to the Observer base class.

• The client configures the number and kind of Observers.

• Observers register themselves with the Subject.

• The Subject communicates events to all registered Observers.

• The Subject may “push” information toward the Observers; alterna-
tively, the Observers may “pull” the information they need from the
Subject.

RULES OF THUMB

• Chain of Responsibility, Command, Mediator, and Observer address
how we may decouple senders and receivers, but with various trade-
offs. Chain of Responsibility sends a sender request down a chain
of possible recipients. Command generally defines a sender-receiver

Observer Pattern ◾ 67

relationship with a subclass. The mediator has senders and receivers
reference each other indirectly. Observer presents a highly decoupled
interface that enables various receivers to be set up at run-time.

• Mediator and Observer are competing patterns. The distinction
between both is that Observer spreads communication by introducing
“observer” and “subject” objects, while a Mediator object wraps the
communication between other things. We’ve found it simpler to build
reusable Observers and Subjects than to make reusable Mediators.

• On the other side, Mediator may employ an Observer to enroll col-
leagues and converse with them dynamically.

Here's A Real-World Example of an Observer Pattern in Java

Any social media network, such as Facebook or Twitter, may serve as a
real-world illustration of the Observer Pattern. When someone changes
his status, all of his followers are notified.

A follower can follow or unfollow another individual at any moment. If
a person unfollows a topic, they will no longer get alerts from that subject
in the future.

Observer Patterns are the foundation of message-oriented applications in
programming. When an application’s status is modified, the subscribers are
notified. This paradigm is used by frameworks such as HornetQ and JMS.

Similarly, all keyboard and mouse events in Java UI programming are
handled by listeners’ objects and assigned functions. When the user clicks
the mouse, the function registered to the mouse click event is called, and
all context data is sent to it as a method parameter.

IMPLEMENT THE OBSERVER PATTERN

• Step 1: Create a class called ResponseHandler1 that implements the
java.util.Observer interface.

//This is class.

import java.util.Observable;
import java.util.Observer;

public class ResponseHandler1 implements Observer {
 private String resp1;

68 ◾ Software Design Patterns: The Ultimate Guide

• Step 2: Make a new ResponseHandler2 class that implements the
java.util.Observer interface.

• Step 3: Make an EventSource class by extending the java.util.
Observable class.

//This is a class.

import java.util.Observable;
import java.util.Observer;

public class ResponseHandler2 implements Observer {
 private String resp1;
 public void update(Observable obj, Object arg) {
 if (arg instanceof String) {
 resp1 = (String) arg;
 System.out.println("\nReceived Response:
" + resp1);
 }
 }
}// End of ResponseHandler2 interface

//This is class.

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.util.Observable;

public class EventSource extends Observable implements
Runnable {
 @Override

 public void update(Observable obj, Object arg) {
 if (arg instanceof String) {
 resp1 = (String) arg;
 System.out.println("\nReceived-Response:
" + resp1);
 }
 }
}// End of ResponseHandler1 interface

Observer Pattern ◾ 69

Another Example

The observer design allows class users to subscribe to events while this
class processes data, for example, and be alerted when these events occur.
In the following example, we develop a processing class and an observer
class that will inform if it identifies words that are longer than 5 letters
when processing a phrase.

The LongWordsObserver interface defines the observer. Implement this
interface to add an observer to an event.

When specified events occur, the WordEvent class will send an event to the
observer classes (in this case, long words were found).

// observe that can register and receive the notifications
public interface LongWordsObserver {
 void notify(WordEvent event);
}

 public void run() {
 try {
 final InputStreamReader isr1 = new
InputStreamReader(System.in);
 final BufferedReader br1 = new
BufferedReader(isr);
 while (true) {
 String response = br1.readLine();
 setChanged();
 notifyObservers(response);
 }
 }
 catch (IOException e) {
 e.printStackTrace();
 }
 }
}// End of Eventsource class

// Event class which contains long word that was found
public class WordEvent {
private String word;

70 ◾ Software Design Patterns: The Ultimate Guide

The PhraseProcessor class is responsible for processing the provided
phrase. The addObserver method is used to register observers. When long
words are discovered, these observers will notify through an instance of
the WordEvent class.

import java.util.ArrayList; import java.util.List;

public class PhraseProcessor {

// list of observers
private List<LongWordsObserver> observers = new
ArrayList<>();

// register observer
public void addObserver(LongWordsObserver observer) {
observers.add(observer);
}

// inform all observers that long word was found private
void informObservers(String word) {
observers.forEach(o -> o.notify(new WordEvent(word)));
}

// the main method - process phrase and look for the long
words. If such are found,
// notify all observers
public void process(String phrase) {
for (String word : phrase.split(" ")) {
if (word.length() > 6)
{
informObservers(word);
}
}
}
}

public WordEvent(String word) {
this.word = word;
}

public String getWord() {
return word;
}
}

Observer Pattern ◾ 71

The LongWordsExample class demonstrates how to register observers,
use the process function, and get notifications when lengthy words are
discovered.

IObservable and IObserver (C#) Observer

In.NET, the IObserver<T> and IObservable<T> interfaces can use to
implement the Observer Pattern.

• The IObservable<T> interface represents the class that sends
notifications.

• The IObserver<T> interface

• It represents the class that receives them.

import java.util.ArrayList; import java.util.List;

public class LongWordsExample {

public static void main(String[] args) {

// create list of words to fill when long words were found
List<String> longWords = new ArrayList<>();
// create PhraseProcessor
class PhraseProcessor
processor = new PhraseProcessor();

// register observer and specify what it should do when it
receives the events,
// namely to append long words in the longwords list
processor.addObserver(event -> longWords.add(event.
getWord()));

// call process method
processor.process("Lorem ipsum dolor sit amet, consectetuer
adipiscing elit");

// show list of long words after processing is done System.
out.println(String.join(", ", longWords));
// consectetuer, adipiscing
}
}

72 ◾ Software Design Patterns: The Ultimate Guide

public class Stocks {
 private string Symbol { get; set; } private decimal
Price { get; set; }
 }

 public class Investor : IObserver<Stocks> { public
IDisposable unsubscriber;
 public virtual void Subscribe(IObservable<Stocks>
provider) { if(provider != null) {
 unsubscriber = provider.Subscribe(this);
 }
 }
 public virtual void OnCompleted() { unsubscriber.
Dispose();
 }
 public virtual void OnError(Exception e) {
 }
 public virtual void OnNext(Stocks stocks) {
 }
 }

 public class StocksTrader : IObservable<Stocks> { public
StocksTrader() {
 observers = new List<IObserver<Stocks>>();
 }
 private IList<IObserver<Stocks>> observers;
 public IDisposable Subscribe(IObserver<Stocks> observer) {
if(!observers.Contains(observer)) {
 observers.Add(observer);
 }
 return new Unsubscriber(observers, observer);
 }
 public class Unsubscriber : IDisposable { private
IList<IObserver<Stocks>> _observers; private
IObserver<Stocks> _observer;
 public Unsubscriber(IList<IObserver<Stock>>
observers, IObserver<Stocks> observer) {
 _observers = observers;
 _observer = observer;
 }

 public void Dispose() { Dispose(true);
 }
 private bool _disposed = false;
 protected virtual void Dispose(bool disposing) {
if(_disposed) {
 return;
 }
 if(disposing) {

Observer Pattern ◾ 73

USAGE

This chapter covered Observer Pattern, along with its implementation, as
well as UML diagram.

 if(_observer != null && _observers.Contains
(_observer)) {
 _observers.Remove(_observer);
 }
 }
 _disposed = true;
 }
 }
 public void Trade(Stocks stocks) { foreach(var
observer in observers) {
 if(stocks== null) {
 observer.OnError(new ArgumentNullException());
 }
 observer.OnNext(stocks);
 }
 }
 public void End() {
 foreach(var observer in observers.ToArray()) {
observer.OnCompleted();
 }
 observers.Clear();
 }
 }

...
var provider = new StocksTrader(); var x1 = new Investor();
x1.Subscribe(provider);
var x2 = new Investor(); x2.Subscribe(provider);

provider.Trade(new Stocks()); provider.Trade(new Stocks());
provider.Trade(null); provider.End();
...

https://taylorandfrancis.com

75DOI: 10.1201/9781003308461-4

C h a p t e r 4

Template Method
Pattern

IN THIS CHAPTER

 ➢ What is Template Method Pattern?

 ➢ Real-world examples

 ➢ Why is Template Method Pattern useful?

 ➢ Advantages/disadvantages

 ➢ Implementation in Python

 ➢ UML diagram

In the previous chapter, we covered the Observer Method, and in this
chapter, we will cover Template Pattern Method with its relevant examples.

The Template Method Design Pattern specifies the skeleton of an algo-
rithm in an operation while delegating some phases to subclasses. This
pattern allows subclasses to redefine specific phases of an algorithm with-
out affecting the algorithm’s structure. We may use the Template Method
Design Pattern to develop a base class with a certain number of steps
required to finish a procedure. When these stages are defined using a tem-
plate, building one or more concrete classes and overriding the template
steps is possible. This allows you to implement part or all of the phases,
depending on the specific class, without rewriting the whole process.

https://doi.org/10.1201/9781003308461-4

76 ◾ Software Design Patterns: The Ultimate Guide

We need an abstract class to utilize the Template Method. The abstract
class is one extensive process that has been split into smaller phases or sub-
sidiary processes. Put another way, the abstract class will call the Template
Method (the main process), and inside the template will call the smaller
steps that finish the significant process. These smaller procedures will be
implemented as methods/functions that the actual classes may call.

We don’t have to instantiate the whole base class to access the steps pro-
vided by the Template function since we’re using an abstract class. Instead,
we may build abstract class subclasses and replace just the steps we require
in the specific subclasses.

Class Diagram of Template Method Design Pattern.

After defining the abstract class, we can develop the concrete classes that
will replace the required steps. To do this, we’ll employ an inheritance
connection. Depending on the context of the particular class, we will over-
ride all or parts of the stages.

THE FACTORY METHOD VS. THE TEMPLATE METHOD
There is considerable misunderstanding about the distinctions between the
Template Method Pattern and the Factory Method Pattern. Their struc-
tures are similar, even though they are not the same entity. A Creational

Template Method Pattern ◾ 77

Pattern used to construct objects from a superclass is the Factory Method.
On the other hand, the Template Method is a Behavioral Pattern that is
used to construct a generic method made of steps that may be customized
by subclasses of the abstract class that contains the Template Method.

In other words, the Factory Method generates objects, while the
Template Method replaces the functionality of a significant/base process.

Now that we’ve established the distinction between these patterns, let’s
look at using the Template Method Design Pattern in Python.

It should note that without using a special library, Python does not
allow abstract classes. We must import the ABC library to utilize abstract
class associations.

THE ABC LIBRARY
The ABC package in Python offers an infrastructure for maintaining
abstract base classes. This implies we may build class connections such
as inheritance or implementations for abstract classes, which is essential
for implementing most Design Patterns and is especially significant in the
case of the Template Method.

WHEN SHOULD THE TEMPLATE METHOD PATTERN BE USED?
When you need to utilize or alter any or all of the stages of an algorithm,
you should use the Template Method. In these circumstances, you will
need to separate the phases of your algorithm or process and make them
independently available via inheritance or implementation.

Let’s look at a real-world example: We have two research groups, one
from University A and one from University B. These two organizations
are researching the impacts of quarantine, which was adopted by nations
in response to the SARS-CoV-2 epidemic. The basic research procedure
is the same for both groups. The basic research procedure serves as a pat-
tern for the two research groups to follow while conducting their exami-
nation. However, research organizations may tailor the research process
in terms of:

• Which measures are taken throughout the research.

• How each phase of the research process is carried out.

Before writing Python code, let’s draw a class diagram to illustrate this
study.

78 ◾ Software Design Patterns: The Ultimate Guide

The research protocol consists of four steps:

• University A chooses to implement two of the four steps (2 and 3).

• The three stages are used by University B (1, 3, and 4).

• Both groups altered all of the selected stages.

• Finally, both groups must do step 3 since it is required.

We already have our class diagram; we just need to modify it to fit our
problem.

After modifying the diagram to fit the conditions we specified, we
arrive at the following model:

Modify Class Diagram of Template Method Design Pattern.

USING PYTHON TO IMPLEMENT THE TEMPLATE
METHOD DESIGN PATTERN
Now that we’ve sketched out our abstract and concrete classes let’s put
them into action in Python.

Let’s begin with our abstract class, researchGuideline.py, which will
contain our Template Methods for the four significant research steps.

Template Method Pattern ◾ 79

We’ll start by importing the ABC library. This library includes a class
called ABC, which we’ll use as a superclass for our research template,
transforming it into an abstract base class.

Following that, we’ll define our steps as class methods. These methods
will be empty for the time being, but when the subclasses are defined, they
will overwrite the steps:

Step 3 now includes the @abstractmethod decorator. This demonstrates
that subclasses of an abstract class must always overwrite that method.
This decorator must include in the imports because it is also part of the
ABC library.

Let us now define our concrete classes. We’re talking about Universities
A and B, each with its own steps. Using the ResearchGuideline template,
we will create a subclass for each university.

Importing ABC library
from abc import ABC, abstractmethod

Creation of our abstract class:
class ResearchGuideline(ABC):

 # Template Method definition:
 def templateMethod(self):
 # Calling all the steps
 self.step1()
 self.step2()
 self.step3()
 self.step4()

 # Defining Template Method Steps
 def step1(self):
 pass

 def step2(self):
 pass

 @abstractmethod
 def step3(self):
 pass

 def step4(self):
 pass

80 ◾ Software Design Patterns: The Ultimate Guide

We must import the ResearchGuideline class into both classes and
establish inheritance between the superclass and the subclass. This enables
us to overwrite the steps defined in the guideline/template. In this case, the
steps will apply through a simple log/print.

Let’s begin with the most basic subclass:

This will save in a Python file named universityC. Let us now create the
second subclass:

This will be saved in a Python file named universityD.
It’s worth noting that we’ve mentioned which university is taking vari-

ous actions. This allows us to appreciate the differences between the two
concrete groups.

Our Template Method Model, including the abstract and concrete
classes, is complete! Now, let’s write our client script to use the model.

Let’s start by importing our classes. Importing the abstract class as
well as the two concrete classes is required. Then, as our template/abstract

from researchGuideline import ResearchGuideline

class UniversityA(ResearchGuideline):
 def step2(self):
 print("Step 2 - Applied by University C")

 def step3(self):
 print("Step 3 - Applied by University D")

from researchGuideline import ResearchGuideline

class UniversityB(ResearchGuideline):
 def step1(self):
 print("Step 1- Applied by University D")

 def step3(self):
 print("Step 3- Applied by University D")

 def step4(self):
 print("Step 4- Applied by University D")

Template Method Pattern ◾ 81

class, we’ll write a function that takes a ResearchGuideline object as a
parameter.

The beauty of the inheritance relationship is that the univer-
sity classes share the same object type because they are subclasses of
ResearchGuideline.

We can pass either the UniversityC or UniversityD object as an argu-
ment to our function that calls the Template Method (client_call()), and
the steps overwritten by the concrete class will change how the Template
Method executes.

We use both classes here so that we can compare the results:

ADVANTAGES

• Equivalent Content: It’s simple to think about the duplicate code in
the superclass by dragging it there where you wish to utilize it.

• Flexibility: It gives a great deal of flexibility, allowing subclasses to
choose how to implement the stages of the algorithms.

• Inheritance: We can reuse our code since the Template Method
leverages inheritance, allowing code reusability.

Imports
from researchGuideline import *
from universityA import UniversityC
from universityB import UniversityD

Auxiliary function
def client_call(research_guideline: ResearchGuideline):
 research_guideline.templateMethod();

Entry point
if __name__ == '__main__':
 # Calling Template Method using the University A class
as parameter
 print("University C:")
 client_call(UniversityC())

 # Calling Template Method using the University A class
as parameter
 print("University D:")
 client_call(UniversityD())

82 ◾ Software Design Patterns: The Ultimate Guide

DISADVANTAGES

• Complex Code: When employing the Template approach, the code
might grow so complex that it is difficult to comprehend even for
developers developing it.

• Limitations: Clients may request an enhanced version if they see a
lack of algorithms in the offered skeleton.

• Violation: By utilizing the Template approach, you may wind up break-
ing the Liskov Substitution Principle, which is not a good thing to do.

APPLICABILITY

• Client Extension: This strategy is always chosen when you wish to
allow customers to extend the algorithm using certain stages but not
the whole structure of the algorithm.

• Similar Algorithms: When you have several similar algorithms with
slight differences, it’s always preferable to utilize the Template Design
Pattern since if any changes occur in the algorithm, you won’t have
to alter each one.

• Framework Development: It is strongly advised to adopt the
Template Design Pattern while constructing a framework since it
will assist us in avoiding duplicate code as well as reusing the piece of
code again and again by making minor modifications.

USAGE

• It is used when similar behavior among subclasses should relocate to
a single standard class to reduce duplication.

• In this chapter, we will cover Template Pattern, where we covered
real-life examples, advantages, disadvantages, and applicability.

IMPORTANT POINTS

1. The Template Method Pattern employs inheritance.

2. The Template Method of the base class should no overridden. In this
manner, the superclass controls the framework of the algorithm,
while the specifics are handled in the subclasses.

Template Method Pattern ◾ 83

TEMPLATE METHOD PATTERN IMPLEMENTATION IN JAVA

• Step 1: Create an abstract class called Game.

• Step 2: Create a Chess class that extends the Game abstract class to
define its function.

//This is abstract class.
public abstract class Game {

 abstract void initialize();
 abstract void start();
 abstract void end();

 public final void play(){

 //initialize-game
 initialize();

 //start-game
 start();

 //end-game
 end();
 }
}// End of Game abstract class

//This is class.

public class Chess extends Game {
 @Override
 void initialize() {
 System.out.println("Chess Game Initialized!
Start playing.");
 }
 @Override
 void start() {
 System.out.println("Game Started and Welcome
to the chess game");
 }
 @Override
 void end() {
 System.out.println("Game Finished!");
 }
}// End of Chess class.

84 ◾ Software Design Patterns: The Ultimate Guide

• Step 3: Create a Soccer class that extends the Game abstract class to
define its function.

• Step 4: Make a class called TemplatePatternDemo.

//This is class.
public class TemplatePatternDemo {

 public static void main(String[] args) throws
InstantiationException, IllegalAccessException,
ClassNotFoundException {

 Class c1=Class.forName(args[0]);
 Game game=(Game) c1.newInstance();
 game.play();
 }
 }// End of Soccer class.

//This is class.

public class Soccer extends Game {

 @Override
 void initialize() {
 System.out.println("Soccer Game Initialized
and Start playing.");
 }

 @Override
 void start() {
 System.out.println("Game Started and Welcome
to the Soccer game!");
 }

 @Override
 void end() {
 System.out.println("Game Ended!");
 }
}// End of Soccer class.

Template Method Pattern ◾ 85

Code Example

import java.util.List; class GameRule{
}
class GameInfo{ String gameName;
List<String> players;
List<GameRule> rules;
}

abstract class Game{ protected GameInfo info;
 public Game(GameInfo info){ this.info = info;
 }
 public abstract void createGame();
public abstract void makeMoves();
public abstract void applyRules();

 /* playGame is the template method. This algorithm
skeleton cannot change by sub-classes. sub-class can
change behaviour only of steps like createGame() etc.
*/

 public void playGame(){
createGame();
makeMoves();
applyRules();
closeGame();
 }
 protected void closeGame(){
 System.out.println("Close-game:"+this.getClass().
getName()); System.out.println(" ");
 }
 }
 class Chess extends Game{
 public Chess(GameInfo info){ super(info);
 }
 public void createGame(){
 // Use GameInfo and create Game System.out.
println("Creating Chess game");
 }
 public void makeMoves(){
System.out.println("Make the Chess moves");
 }
 public void applyRules(){
System.out.println("Apply the Chess rules");
 }
 }

86 ◾ Software Design Patterns: The Ultimate Guide

Explanation:

1. Game is an abstract superclass with a template function called
playGame().

 class Checkers extends Game{
 public Checkers(GameInfo info){ super(info);
 }
 public void createGame(){
 // Use GameInfo and create the Game System.out.
println("Creating Checkers game");
 }
 public void makeMoves(){
System.out.println("Make the Checkers moves");
 }
 public void applyRules(){
System.out.println("Apply the Checkers rules");
 }

 }
 class Ludo extends Game{
 public Ludo(GameInfo info){ super(info);
 }
 public void createGame(){
 // Use GameInfo and create Game System.out.
println("Creating the Ludo game");
 }
 public void makeMoves(){ System.out.println("Make
the Ludo moves");
}
public void applyRules(){ System.out.println("Apply
the Ludo rules");
}
}

public class TemplateMethodPattern{
public static void main(String args[]){
System.out.println(" ");

Game game = new Chess(new GameInfo()); game.playGame();

game = new Ludo(new GameInfo()); game.playGame();

game = new Checkers(new GameInfo()); game.playGame();
}
}

Template Method Pattern ◾ 87

2. The playGame() skeleton is defined in the base class: Game.

3. Subclasses, such as Chess, Ludo, and Checkers, cannot modify the
skeleton of playGame (). They can, however, change the behavior
of some processes.

TEMPLATE METHOD IN C#
Participants

This pattern’s classes and objects are as follows:

• AbstractClass (DataObject) contains abstract primitive operations
that concrete subclasses specify to accomplish algorithm stages. It
also implements a template function that defines the skeleton of an
algorithm. The template method invokes primitive operations and
AbstractClass operations, and those of additional objects.

• ConcreteClass (CustomerDataObject) implements the primitive oper-
ations required to carry out the algorithm’s subclass-specific phases.

C# Structural Code

This structure code showcases the Template Method, which offers a skel-
eton method call sequence. One or more stages can delegate to subclasses
that implement them without altering the overall calling sequence.

using System;
namespace Template.Structural
{
 /// <summary> Template Design Pattern </summary>
 public class Program
 {
 public static void Main(string[] args)
 {
 AbstractClass aX = new ConcreteClassX();
 aX.TemplateMethod();
 AbstractClass aY = new ConcreteClassY();
 aY.TemplateMethod();
 // Wait for the user
 Console.ReadKey();
 }
 }
 /// <summary> 'AbstractClass' abstract class </summary>
 public abstract class AbstractClass
 {

88 ◾ Software Design Patterns: The Ultimate Guide

Real-World C# Code

This real-world code shows a Template function called Run(), which gives
a Skeleton Pattern calling sequence. The CustomerDataObject subclass,
which implements the Connect, Select, Process, and Disconnect methods,
is responsible for carrying out these tasks.

 public abstract void PrimitiveOperation1();
 public abstract void PrimitiveOperation2();
 //"Template-method"
 public void TemplateMethod()
 {
 PrimitiveOperation1();
 PrimitiveOperation2();
 Console.WriteLine("");
 }
 }
 /// <summary> 'ConcreteClass' class </summary>
 public class ConcreteClassX : AbstractClass
 {
 public override void PrimitiveOperation1()
 {
 Console.WriteLine("ConcreteClassX.
PrimitiveOperation1()");
 }
 public override void PrimitiveOperation2()
 {
 Console.WriteLine("ConcreteClassX.
PrimitiveOperation2()");
 }
 }
 /// <summary> 'ConcreteClass' class </summary>
 public class ConcreteClassB : AbstractClass
 {
 public override void PrimitiveOperation1()
 {
 Console.WriteLine("ConcreteClassY.
PrimitiveOperation1()");
 }
 public override void PrimitiveOperation2()
 {
 Console.WriteLine("ConcreteClassY.
PrimitiveOperation2()");
 }
 }
}

Template Method Pattern ◾ 89

using System;
using System.Collections.Generic;

namespace Template.RealWorld
{
 /// <summary> Template Design Pattern </summary>

 public class Program
 {
 public static void Main(string[] args)
 {
 DataAccessor categories = new Categories();
 categories.Run(5);

 DataAccessor products = new Products();
 products.Run(3);

 // Wait for the user

 Console.ReadKey();
 }
 }

 /// <summary> The 'AbstractClass' abstract class
</summary>

 public abstract class DataAccessor
 {
 public abstract void Connect();
 public abstract void Select();
 public abstract void Process(int top);
 public abstract void Disconnect();

 //'Template-Method'

 public void Run(int top)
 {
 Connect();
 Select();
 Process(top);
 Disconnect();
 }
 }

 /// <summary> 'ConcreteClass' class </summary>

 public class Categories : DataAccessor
 {
 private List<string> categories;

90 ◾ Software Design Patterns: The Ultimate Guide

 public override void Connect()
 {
 categories = new List<string>();
 }

 public override void Select()
 {
 categories.Add("Black");
 categories.Add("Grey");
 categories.Add("Blue");
 categories.Add("Green");
 categories.Add("Yellow");
 categories.Add("Pink");
 categories.Add("Orange");
 }

 public override void Process(int top)
 {
 Console.WriteLine("Categories.. ");

 for(int x = 0; x < top; x++)
 {
 Console.WriteLine(categories[x]);
 }

 Console.WriteLine();
 }

 public override void Disconnect()
 {
 categories.Clear();
 }
 }

 /// <summary> A 'ConcreteClass' class </summary>

 public class Products : DataAccessor
 {
 private List<string> products;

 public override void Connect()
 {
 products = new List<string>();
 }

 public override void Select()
 {
 products.Add("Bike");

Template Method Pattern ◾ 91

This chapter discussed the Template Method Pattern, including its repre-
sentation and examples in Java, C# and Python.

 products.Add("Boat");
 products.Add("Car ");
 products.Add("Moped ");
 products.Add("Truck");
 products.Add("Stroller ");
 products.Add("Rollerskate");
 }

 public override void Process(int top)
 {
 Console.WriteLine("Products.. ");

 for (int x = 0; x < top; x++)
 {
 Console.WriteLine(products[i]);
 }

 Console.WriteLine();
 }

 public override void Disconnect()
 {
 products.Clear();
 }
 }
}

https://taylorandfrancis.com

93DOI: 10.1201/9781003308461-5

C h a p t e r 5

Singleton Pattern

IN THIS CHAPTER

 ➢ What is Singleton Pattern?

 ➢ Real-world examples of Singleton Pattern

 ➢ Why is Singleton Pattern useful?

 ➢ Advantages/disadvantages

 ➢ Implementation in Python

 ➢ UML diagram

In the previous chapter, we covered the Template Method Pattern, and in
this chapter, we will cover Singleton Pattern with its relevant examples.

The Singleton Pattern is a Creational Design Pattern and among the
most fundamental Design Patterns we may use. It is a method of providing
one and only one object of a particular type. It simply takes one class to
define methods and identify objects.

According to the Singleton Pattern, “create a class that has only one
instance and gives a global point of access.”

In other words, a class must insure that only one instance is created and
that all other classes may access only one object.

The Singleton Design Pattern comes in two varieties.

• Early Instantiation: The construction of an instance at the time of load.

• Lazy instantiation: Creating instances only when needed.

https://doi.org/10.1201/9781003308461-5

94 ◾ Software Design Patterns: The Ultimate Guide

A basic example of a database connection will help you understand the
Singleton Design Pattern. When each item makes a unique Database
Connection to the Database, it significantly impacts the project’s cost. As
a result, it is always better to construct a single connection rather than
numerous unrelated connections, as enabled by the Singleton Design
Pattern.

Pattern of Singleton.

MOTIVATION
This pattern is frequently used in features that require control over a
shared resource, such as a database connection or a file. Access to the
shared resource may be regulated and integrity preserved by guaranteeing
that a class can only use to construct a single instance and giving a single
global access point.

The use of single instances also ensures that some features of our pro-
grams are not rewritten by other classes, which may result in dangerous or
inefficient code. This also allows us to access the same object from many
places in our applications without the danger of it being overwritten at
some time.

For example, database connections are once made in our applica-
tions, and the same object is utilized to conduct database actions. If dis-
tinct portions of our program could make their database connections,
integrity concerns may occur when each part tries to access the database
independently.

REAL-WORLD EXAMPLE
Consider this: a program on a server contains numerous sections, each of
which creates its connection to a database and performs distinct actions
on the database. Sounds crazy, doesn’t it?

Singleton Pattern ◾ 95

A Singleton lets us construct just one instance of the database con-
nection, and that same object is used to do additional database actions in
other portions of the program.

IMPLEMENTATION
The Singleton Pattern stipulates that a class can only be instantiated by one
object. Implementing a creation method that saves the produced object in
a static field gives you control over object creation.

All calls to this creation method either return the original Singleton
object or an error indicating that an instantiated object already exists. This
keeps the Singleton property and avoids generating multiple objects for
our class.

A country can have a single government that controls access and opera-
tions, which is an excellent example of a Singleton Design. Any attempt to
establish a new government is prohibited.

Let’s have a look at the many Singleton Design Pattern implementations.

Method 1: Design Pattern of Monostate/Borg Singleton

Borg’s pattern may be used to design Singleton behavior, but numerous
instances share the same state instead of having just one instance of the
class. We don’t focus on sharing the instance identification here but rather
on the sharing state.

Singleton Borg pattern
class Borg:

 # Each instance shares a state
 __shared_state = dict()

 # constructor-method
 def __init__(self):

 self.__dict__ = self.__shared_state
 self.state = 'PeeksforPeeks'

 def __str__(self):

 return self.state

main method
if __name__ == "__main__":

96 ◾ Software Design Patterns: The Ultimate Guide

Design Pattern of Singleton.

It is simple to see that thread synchronization is no longer relevant after an
object is formed because the object will never be equal to None, and any
sequence of actions will provide consistent results.

So, when the object is equal to None, we will only obtain the Lock on
the getInstance function.

Double Checked Locking singleton-pattern
import threading
class SingletonDoubleChecked(object):

 # resources shared by every instance

 __singleton_lock = threading.Lock()
 __singleton_instance = None

 people1 = Borg() # object of the class Borg
 people2 = Borg() # object of the class Borg
 people3 = Borg() # object of the class Borg

 people1.state = 'DataStructure' # people1 changed state
 people2.state = 'Algorithm' # people2 changed state

 print(people1) # output --> Algorithms
 print(people2) # output --> Algorithms

 people3.state = 'Peeks' # people3 changed
 # the shared state

 print(people1) # output --> Peeks
 print(people2) # output --> Peeks
 print(people3) # output --> Peeks

Singleton Pattern ◾ 97

CLASSIC IMPLEMENTATION OF SINGLETON DESIGN PATTERN
In the implementation of the Singleton Design Pattern, we utilize the static
method to create the getInstance method, which can return the shared
resource. We also utilize the so-called Virtual Private Constructor to raise
an exception against it, though this is not strictly necessary.

classic implementation of the Singleton Design pattern
class Singleton:

 __shared_instance = 'PeeksforPeeks'

 # define classmethod
 @classmethod
 def instance(cls):

 # check for singleton instance
 if not cls.__singleton_instance:
 with cls.__singleton_lock:
 if not cls.__singleton_instance:
 cls.__singleton_instance = cls()

 # return singleton instance
 return cls.__singleton_instance

main method
if __name__ == '__main__':

 # create class C
 class C(SingletonDoubleChecked):
 pass

 # create class D
 class D(SingletonDoubleChecked):
 pass

 A1, A2 = C.instance(), C.instance()
 B1, B2 = D.instance(), D.instance()

 assert A1 is not B1
 assert A1 is A2
 assert B1 is B2

 print('A1 : ', A1)
 print('A2 : ', A2)
 print('B1 : ', B1)
 print('B2 : ', B2)

98 ◾ Software Design Patterns: The Ultimate Guide

CLASS DIAGRAM

Class Diagram of Singleton.

 @staticmethod
 def getInstance():

 """Static Access Method"""
 if Singleton.__shared_instance == 'PeeksforPeeks':
 Singleton()
 return Singleton.__shared_instance

 def __init__(self):

 """virtual private constructor"""
 if Singleton.__shared_instance != 'PeeksforPeeks':
 raise Exception ("This class is singleton
class !")
 else:
 Singleton.__shared_instance = self

main-method
if __name__ == "__main__":

 # create object of the Singleton Class
 obj = Singleton()
 print(obj)

 # pick instance of the class
 obj = Singleton.getInstance()
 print(obj)

Singleton Pattern ◾ 99

BENEFITS OF USING THE SINGLETON PATTERN

• Initializations: An object generated by the Singleton Pattern is only
initialized the first time it is requested.

• Obtaining access to the object: We gained global access to the
object’s instance.

• Count of occurrences: Classes that use the Singleton Method can
only have one instance.

DISADVANTAGES OF EMPLOYING THE
SINGLETON PATTERN

• An environment with Multiple Threads: It is challenging to utilize
the Singleton Pattern in a multithread environment because we must
ensure that the multithread does not build the Singleton object mul-
tiple times.

• Principle of exclusive responsibility: Because the Singleton
technique solves two issues at once, it violates the idea of single
responsibility.

• Procedure for unit testing: Because they add a global state into the
program, unit testing becomes very difficult.

APPLICABILITY

• Controlling global variables: In projects where we explicitly require
tight control over global variables, it is highly suggested to adopt the
Singleton Pattern.

• Singleton Patterns are often combined with the Factory Design
Pattern to provide logging, caching, thread pools, and configuration
settings.

USAGE OF SINGLETON DESIGN PATTERN
The Singleton pattern is commonly used in multithreaded and database
applications. It is utilized in logging, caching, thread pools, and configura-
tion settings, among other things.

100 ◾ Software Design Patterns: The Ultimate Guide

How to Implement the Singleton Design Pattern in Java

We require a static member of the class, a private constructor, and a static
factory function to build a Singleton class.

• Static member: It only uses memory once since it is static, and it
includes an instance of the Singleton class.

• Private constructor: This prevents the Singleton class from instanti-
ating from outside the class.

• Static factory method: This method gives the Singleton object’s
global point of access and returns the instance to the caller.

UNDERSTANDING EARLY SINGLETON PATTERN
INSTANTIATION
In this scenario, we construct the class instance when we declare the
static data member; therefore, the class instance is formed during
classloading.

Let’s look at an example of a Singleton Design Pattern that uses early
instantiation.

UNDERSTANDING THE LAZY SINGLETON
INSTANTIATION PATTERN
In such cases, we build the class instance in a synchronized method or
synchronized block, so that the class instance is produced only when
needed.

class X{
 private static X obj=new X();//Early, instance will
create at load time
 private A(){}

 public static X getX(){
 return obj;
 }

 public void doSomething(){
 //write our code
 }
 }

Singleton Pattern ◾ 101

Let’s look at a basic Singleton Design Pattern utilizing lazy instantiation.

IMPORTANCE OF SERIALIZATION IN THE
SINGLETON PATTERN
If the Singleton class is Serializable, the Singleton instance can serialize.
We can deserialize it once it has been serialized, but it will not return the
Singleton object.

We must override the readResolve() function to fix this problem, which
enforces the Singleton. It is invoked immediately after the object has been
deserialized. It gives back the Singleton object.

class X{
 private static X obj;
 private X(){}

 public static X getX(){
 if (obj == null){
 synchronized(Singleton.class){
 if (obj == null){
 obj = new Singleton();//instance will create
at request time
 }
 }
 }
 return obj;
 }

 public void doSomething(){
 //write our code
 }
 }

public class X implements Serializable {
 //your code of singleton
 protected Object readResolve() {
 return getX();
 }
}

102 ◾ Software Design Patterns: The Ultimate Guide

UNDERSTANDING A REAL-WORLD EXAMPLE
OF THE SINGLETON PATTERN

• We will construct a JDBCSingleton class. This JDBCSingleton class
has a private constructor and a private static instance jdbc of itself.

• The JDBCSingleton class has a static method for exposing its static
instance to the outside world. JDBCSingletonDemo will now use the
JDBCSingleton class to obtain the JDBCSingleton object.

ASSUMPTION
In our MySQL database, you have built a table called userdata with three
fields: uid, uname, and upassword. The database’s name is kashikakaur,
the username is the root, and the password is root1234.

File: JDBCSingleton.java

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;

class JDBCSingleton {
 //Step1
 // create JDBCSingleton class.
 //static member holds only one instance of JDBCSingleton
class

 private static JDBCSingleton jdbc;

 //JDBCSingleton prevents instantiation from any other
class
 private JDBCSingleton() { }

 //we are providing gloabal point of the access
 public static JDBCSingleton getInstance() {
 if (jdbc==null)
 {
 jdbc=new
JDBCSingleton();
 }
 return jdbc;
 }

Singleton Pattern ◾ 103

 // to get connection from the methods like insert,
view, etc.
 private static Connection getConnection()throws
ClassNotFoundException, SQLException
 {

 Connection con=null;
 Class.forName("com.mysql.jdbc.Driver");
 con= DriverManager.
getConnection("jdbc:mysql://localhost:3306/kashikakaur",
"root", "root1234");
 return con;

 }

 //to insert record into a database
 public int insert(String name, String pass)
throws SQLException
 {
 Connection c=null;

 PreparedStatement ps=null;

 int recordCounter=0;

 try {

 c1=this.getConnection();
 ps=c1.prepareStatement("insert into
userdata(uname,upassword)values(?,?)");
 ps.setString(1, name);
 ps.setString(2, pass);
 recordCounter=ps.executeUpdate();

 } catch (Exception e) { e.printStackTrace();
} finally{
 if (ps!=null){
 ps.close();
 }if(c1!=null){
 C1.close();
 }
 }
 return recordCounter;
 }

//to view data from the database
 public void view(String name) throws SQLException
 {
 Connection con = null;

104 ◾ Software Design Patterns: The Ultimate Guide

 PreparedStatement ps = null;
 ResultSet rs = null;

 try {

 con=this.getConnection();
 ps=con.prepareStatement("select *
from userdata where uname=?");
 ps.setString(1, name);
 rs=ps.executeQuery();
 while (rs.next()) {
 System.out.println("Name=
"+rs.getString(2)+"\t"+"Paasword= "+rs.getString(3));

 }

 } catch (Exception e) { System.out.println(e);}
 finally{
 if(rs!=null){
 rs.close();
 }if (ps!=null){
 ps.close();
 }if(con!=null){
 con.close();
 }
 }
 }

 // to update password for given username
 public int update(String name, String password)
throws SQLException {
 Connection c=null;
 PreparedStatement ps=null;

 int recordCounter=0;
 try {
 c1=this.getConnection();
 ps=c.prepareStatement(" update
userdata set upassword=? where uname='"+name+"' ");
 ps.setString(1, password);
 recordCounter=ps.executeUpdate();
 } catch (Exception e) { e.printStackTrace();
} finally{

 if (ps!=null){
 ps.close();
 }if(c1!=null){
 c1.close();

Singleton Pattern ◾ 105

File: JDBCSingletonDemo.java

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
import java.sql.SQLException;
class JDBCSingletonDemo{
 static int count=1;
 static int choice;
 public static void main(String[] args) throws
IOException {

 JDBCSingleton jdbc= JDBCSingleton.getInstance();

 }
 }
 return recordCounter;
 }

// to delete the data from database
 public int delete(int userid) throws SQLException{
 Connection c=null;
 PreparedStatement ps=null;
 int recordCounter=0;
 try {
 c1=this.getConnection();
 ps=c1.prepareStatement(" delete from
userdata where uid='"+userid+"' ");
 recordCounter=ps.executeUpdate();
 } catch (Exception e) { e.printStackTrace(); }
 finally{
 if (ps!=null){
 ps.close();
 }if(c1!=null){
 c1.close();
 }
 }
 return recordCounter;
 }
 }// End of JDBCSingleton class

106 ◾ Software Design Patterns: The Ultimate Guide

 BufferedReader br=new BufferedReader
(new InputStreamReader(System.in));
 do{
 System.out.println("DATABASE-OPERATIONS");
 System.out.println(" --------------------- ");
 System.out.println(" 1. Insert ");
 System.out.println(" 2. View ");
 System.out.println(" 3. Delete ");
 System.out.println(" 4. Update ");
 System.out.println(" 5. Exit ");

 System.out.print("\n");
 System.out.print("Enter the choice of what we want
to perform in database: ");

 choice=Integer.parseInt(br.readLine());
 switch(choice) {

 case 1:{
 System.out.print("Enter username we
want to insert data into database: ");
 String username=br.readLine();
 System.out.print("Enter password we
want to insert data into database: ");
 String password=br.readLine();

 try {
 int x= jdbc.insert(username,
password);
 if (x>0) {
 System.out.println((count++) +
" Data has insert successfully");
 }else{
 System.out.println("Data
has not inserted ");
 }

 } catch (Exception e) {
 System.out.println(e);
 }

 System.out.println("Enter key to
continue");
 System.in.read();

 }//End of the case 1
 break;
 case 2:{

Singleton Pattern ◾ 107

 System.out.print("Enter username : ");
 String username=br.readLine();

 try {
 jdbc.view(username);
 } catch (Exception e) {
 System.out.println(e);
 }
 System.out.println("Enter key to
continue");
 System.in.read();

 }//End of the case 2
 break;
 case 3:{
 System.out.print("Enter the
userid, we want to delete: ");
 int userid=Integer.parseInt
(br.readLine());

 try {
 int x= jdbc.delete(userid);
 if (x>0) {
 System.out.println((count++)
+ " Data has delete successfully");
 }else{
 System.out.println("Data
has not delete");
 }

 } catch (Exception e) {
 System.out.println(e);
 }
 System.out.println("Enter key to
continue");
 System.in.read();

 }//End of the case 3
 break;
 case 4:{
 System.out.print("Enter username, we
want to update: ");
 String username=br.readLine();
 System.out.print("Enter new
password ");
 String password=br.readLine();

 try {

108 ◾ Software Design Patterns: The Ultimate Guide

C# Singleton Pattern
Participants
This pattern’s classes and objects are as follows:

Solitary (LoadBalancer)

• It provides an Instance operation that allows customers to access its
one-of-a-kind instance. Instance is a type of class operation.

• It is in charge of generating and maintaining its distinct instance.

C# Structural Code

This structured code exhibits the Singleton pattern, which ensures that
just one instance of the class (the Singleton) may be produced.

 int x= jdbc.update(username,
password);
 if (x>0) {
 System.out.println((count++)
+ " Data has update successfully");
 }

 } catch (Exception e) {
 System.out.println(e);
 }
 System.out.println("Enter key to
continue");
 System.in.read();

 }// end of the case 4
 break;

 default:
 return;
 }

 } while (choice!=4);
 }
}

using System;

namespace Singleton.Structural
{

Singleton Pattern ◾ 109

 /// <summary> Singleton Design Pattern </summary>

 public class Program
 {
 public static void Main(string[] args)
 {
 // Constructor is protected – can't use new

 Singleton ss1 = Singleton.Instance();
 Singleton ss2 = Singleton.Instance();

 // Test for same instance

 if (ss1 == ss2)
 {
 Console.WriteLine("Objects are same
instance");
 }

 // Wait for the user

 Console.ReadKey();
 }
 }

 /// <summary> The 'Singleton' class </summary>

 public class Singleton
 {
 static Singleton instance;

 // Constructor : 'protected'

 protected Singleton()
 {
 }

 public static Singleton Instance()
 {
 // Uses the lazy initialization.
 // Note: this is not thread safe.
 if (instance == null)
 {
 instance = new Singleton();
 }

 return instance;
 }
 }
}

110 ◾ Software Design Patterns: The Ultimate Guide

Real-World C# Code

As a LoadBalancing object, this real-world code shows the Singleton
Design. Because servers may come on- or off-line dynamically, only
a single instance (the Singleton) of the class may be constructed, and
every request must go via the one object that knows the state of the
(web) farm.

using System;
using System.Collections.Generic;

namespace Singleton.RealWorld
{
 /// <summary> Singleton Design Pattern </summary>

 public class Program
 {
 public static void Main(string[] args)
 {
 LoadBalancer bb1 = LoadBalancer
.GetLoadBalancer();
 LoadBalancer bb2 = LoadBalancer
.GetLoadBalancer();
 LoadBalancer bb3 = LoadBalancer
.GetLoadBalancer();
 LoadBalancer bb4 = LoadBalancer
.GetLoadBalancer();

 // Same instance?

 if (bb1 == bb2 && bb2 == bb3 && bb3 == bb4)
 {
 Console.WriteLine("Same-instance\n");
 }

 // Load-balance 15 server requests

 LoadBalancer balancer = LoadBalancer.
GetLoadBalancer();
 for (int x = 0; x < 15; x++)
 {
 string server = balancer.Server;
 Console.WriteLine("Dispatch the Request to: "
+ server);
 }

 // Wait for the user

Singleton Pattern ◾ 111

 Console.ReadKey();
 }
 }

 /// <summary> The 'Singleton' class </summary>

 public class LoadBalancer
 {
 static LoadBalancer instance;
 List<string> servers = new List<string>();
 Random random = new Random();

 // Lock the synchronization object

 private static object locker = new object();

 // Constructor-(protected)

 protected LoadBalancer()
 {
 // List of the available servers
 servers.Add("ServerI");
 servers.Add("ServerII");
 servers.Add("ServerIII");
 servers.Add("ServerIV");
 servers.Add("ServerV");
 }

 public static LoadBalancer GetLoadBalancer()
 {
 // Support the multithreaded applications
through
 // 'Double checked locking' pattern which
 // (once instance exists) avoids the locking
each
 // time the method is invoked

 if (instance == null)
 {
 lock (locker)
 {
 if (instance == null)
 {
 instance = new LoadBalancer();
 }
 }
 }

 return instance;
 }

112 ◾ Software Design Patterns: The Ultimate Guide

This chapter covered Singleton Design Pattern, along with its implementa-
tion, benefits, and drawbacks.

 // Random load balancer that is simple but
effective

 public string Server
 {
 get
 {
 int r1 = random.Next(servers.Count);
 return servers[r1].ToString();
 }
 }
 }
}

113DOI: 10.1201/9781003308461-6

C h a p t e r 6

Strategy Pattern

IN THIS CHAPTER

 ➢ What is Strategy Pattern?

 ➢ Real-world examples

 ➢ Why is Strategy Pattern useful?

 ➢ Advantages/disadvantages

 ➢ Implementation in Python

 ➢ UML diagram

In the previous chapter, we covered Singleton Design Pattern, and in this
chapter, we will discuss Strategy Pattern.

We may have difficulties implementing the functionality we want while
designing software applications. Software Design Patterns are standard
solutions to some of these issues that arise when utilizing object-oriented
design to construct software applications. In this piece, we’ll look at one
of the most common Design Patterns, the Strategy Pattern, and how it’s
implemented in Python.

INTRODUCTION
Before delving into the Strategy Pattern, we need be familiar with some of
the core concepts of Object-Oriented Programming (OOP). Classes and
objects are at the heart of the Design Pattern notion. The Design Patterns
are higher-level solutions to problems that arise frequently. They serve as

https://doi.org/10.1201/9781003308461-6

114 ◾ Software Design Patterns: The Ultimate Guide

a roadmap for resolving a specific issue. They aren’t restricted to just one
programming language. Design Patterns may be used in any program-
ming language that supports OOP; the same approach, but the terminol-
ogy varies.

Types of Design Pattern.

Design Patterns are divided into creational, structural, and behavioral cat-
egories. Different approaches to constructing things that boost the flex-
ibility of our programs are referred to as creational patterns. Structural
Patterns are about object relationships and using objects and classes to
make bigger structures more flexible. Effective communications and inter-
actions between objects are the focus of Behavioral Patterns.

STRATEGY
The Strategy Pattern is a Design Pattern that allows our program to choose
algorithms during runtime, making it more adaptable. “Strategy Pattern
attempts to describe a family of algorithms, encapsulates each one, and
makes them interchangeable.” More precisely, it allows us to specify a
collection of algorithms that may swap out at runtime based on specific
variables. The Strategy Pattern belongs to the behavioral Design Patterns
category since it allows an algorithm’s behavior to be changed during
runtime.

USAGE
We may have a few options for doing anything in our code while design-
ing software applications. We may wish to do something different without
modifying the code depending on our client’s preferences, data sources,
or other considerations. In the main class of the code, we frequently use
conditional statements to construct algorithms for various scenarios.

Strategy Pattern ◾ 115

However, it is not an elegant method of improving code. It lengthens the
primary class of our code, making it difficult to maintain the program.

The Strategy Pattern is an excellent choice in these circumstances. The
Strategy Pattern advises that we create classes for our algorithms, referred
to as strategies. The context variable refers to the strategy in the main class,
and the code reacts to that scenario. The case’s context does not choose
a suitable approach. Instead, the customer informs the context of the
intended strategy.

For example, if we have a chess app, we may choose between easy,
medium, and high difficulty levels. The computer selects an algorithm
based on the level we select. It’s one of the most effective instances of the
Strategy Pattern in action.

The Open/Close concept governs the Strategy Pattern; a software pro-
gram is open for extension but closed for alteration. It implies we may
add as many new tactics as we like without changing the primary class. It
makes our code more adaptable and maintainable.

UML DIAGRAMS

UML diagram of Strategy Pattern.

• Context: It is the most important class in our application. It keeps a
reference to one of the concrete strategies.

116 ◾ Software Design Patterns: The Ultimate Guide

• Strategy: All supported strategies use a single strategy interface.
Only the strategy interface allows Context to communicate with
other strategies.

• ConcreteStrategies: The classes use the Strategy interface to imple-
ment the algorithm.

IMPLEMENTATION
Let’s look at how to implement a Strategy Pattern step by step.

1. In the primary class, we should first identify the algorithms we want
to use as concrete strategies.

2. Add a reference to the strategy, a method to set the strategy, and
another method to execute the strategy to the context (main class).
We may also set a default strategy so that users only switch between
strategies if they don’t like the default.

We begin by defining the strategy field, which stores a reference to a
strategy object and the setStrategy and executeStrategy functions. If
a user selects an option, setStrategy sets the selected strategy; other-
wise, it sets the default strategy.

3. Create a Strategy Interface that is shared by all concrete strategies.
The abstract technique in the Strategy interface can change in con-
crete strategies.

context - primary class
class Context:
 strategy: Strategy ## strategy interface

 def setStrategy(self, strategy: Strategy = None)
-> None:
 if strategy is not None:
 self.strategy = strategy
 else:
 self.strategy = Default()

 def executeStrategy(self) -> str:
 print(self.strategy.execute())

Strategy Pattern ◾ 117

4. Define the specific strategies that will use to implement the Strategy
interface. These concrete strategies must share a method that over-
rides the Strategy interface’s execute function.

5. Users may now specify the approach they wish at runtime. Create a
context object and give a concrete strategy.

from abc import ABC, abstractmethod

Strategy-interface
class Strategy(ABC):
 @abstractmethod
 def execute(self) -> str:
 pass

Example-application
appC = Context()
appD = Context()
appE = Context()

selecting stratigies
appC.setStrategy(ConcreteStrategyC())
appD.setStrategy(ConcreteStrategyD())
appE.setStrategy() ## sets to default strategy

each object below execute different strategy with
the same method
appC.executeStrategy()
appD.executeStrategy()
appE.executeStrategy()

Concrete-strategies
class ConcreteStrategyC(Strategy):
 def execute(self) -> str:
 return "ConcreteStrategy C"

class ConcreteStrategyD(Strategy):
 def execute(self) -> str:
 return "ConcreteStrategy D"

class Default(Strategy):
 def execute(self) -> str:
 return "Default"

118 ◾ Software Design Patterns: The Ultimate Guide

If we wish to utilize a different strategy, replace the ConcreteStrategy
instance with the one we want. We can introduce a new concrete strategy
without altering the context.

EXAMPLE
Let’s use the Strategy Pattern to create a rock, paper, scissors game. To play
against the computer, we can choose any strategy from rock, paper, scis-
sors, or random. The Strategy Pattern is used in the example code below to
implement multiple tactics.

Changing strategy among Rock, Paper, Scissors, and
Random

import random
from abc import ABC, abstractmethod

Strategy-interface
class Strategy(ABC):
 @abstractmethod
 def selection(self) -> None:
 pass

Concrete-strategies
class Rock(Strategy):
 ## actual application will have the algorithm instead
this method
 def selection(self) -> str:
 return "Rock"

class Paper(Strategy):
 def selection(self) -> str:
 return "Paper"

class Scissors(Strategy):
 def selection(self) -> str:
 return "Scissors"

class Random(Strategy):
 def selection(self) -> str:
 options = ["Rock", "Paper", "Scissors"]
 return random.choice(options)

Context-class
class Game:
 strategy: Strategy

Strategy Pattern ◾ 119

BENEFITS
The open/closed concept states that it is always simple to implement new
strategies without affecting the client’s code.

• Isolation: We can separate the algorithms’ unique implementation
details from the client’s code.

• Encapsulation: Strategy classes entirely encapsulate the data
structures necessary to implement the algorithm. As a result, an

 def __init__(self, strategy: Strategy = None) -> None:
 if strategy is not None:
 self.strategy = strategy
 else:
 self.strategy = Random()

 def play(self, sec) -> None:
 s1 = self.strategy.selection()
 s2 = sec.strategy.selection()
 if s1 == s2:
 print("It's tie")
 elif s1 == "Rock":
 if s2 == "Scissors":
 print("Player-1 wins!")
 else:
 print("Player-2 wins!")
 elif s1 == "Scissors":
 if s2 == "Paper":
 print("Player-1 wins!")
 else:
 print("Player-2 wins!")
 elif s1 == "Paper":
 if s2 == "Rock":
 print("Player-1 wins!")
 else:
 print("Player-2 wins!")

Example-application
Player-1 can select his strategy
player1 = Game(Paper())

Player-2 gets to select
player2 = Game(Rock())

After second player choice, we call play method
player1.play(player2)

120 ◾ Software Design Patterns: The Ultimate Guide

algorithm’s implementation may be altered without impacting the
Context class.

• Run-time Switching: The program may be able to switch strategies
while running.

DOWNSIDES
In most circumstances, the application configures the Context with the
needed Strategy object. As a result, the program must generate and man-
age two instead of one object.

• Client awareness: Clients should be aware of the differences between
the techniques to choose the best one for them.

• Increases complexity: When there are only a few algorithms to
implement, the Strategy approach is a waste of time and resources.

APPLICABILITY
When we have many similar classes but differ in how they execute, this
strategy is highly recommended.

Conquering Isolation is a technique for isolating a class’s business logic
from its algorithmic implementation.

Example of a Real-Time Strategy Pattern – Payment in Java

Let’s look at a real-world example of the Strategy Design Pattern. Stella
visits a shopping center and spends roughly Rs 80,000 on an LED televi-
sion and a washing machine. After acquiring the LED TV and washing
machines, Stella walks to the bill counter, and he wants to pay the money.
There are three methods for paying the money. Credit card, debit card,
and cash are the available alternatives. So, he must select one of these three
alternatives and pay the money at the bill counter.

STRATEGY PATTERN IMPLEMENTATION IN JAVA

• Step 1: Create an interface for Strategy.

//This is interface.

public interface Strategy {

Strategy Pattern ◾ 121

• Step 2: Make an Addition class that implements the Startegy interface.

• Step 3: Make a Subtraction class that implements the Startegy
interface.

• Step 4: Make a Multiplication class that implements the Startegy
interface.

//This is class.
public class Addition implements Strategy{

 @Override
 public float calculation(float x, float y) {
 return x+y;
 }

}// End of Addition class.

//This is class.
public class Subtraction implements Strategy{

 @Override
 public float calculation(float x, float y) {
 return x-y;
 }

}// End of Subtraction class.

 public float calculation(float x, float y);

}// End of Strategy interface.

//This is class.

public class Multiplication implements Strategy{

 @Override

122 ◾ Software Design Patterns: The Ultimate Guide

• Step 5: Create Context class that will query the Startegy interface for
the type of strategy to execute.

• Step 6: Make a class called StartegyPatternDemo.

//This is class.

public class Context {

 private Strategy strategy;

 public Context(Strategy strategy){
 this.strategy = strategy;
 }

 public float executeStrategy(float numb1, float
numb2){
 return strategy.calculation(numb1, numb2);
 }
}// End of Context class.

//This is a class.
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;

public class StrategyPatternDemo {

 public static void main(String[] args) throws
NumberFormatException, IOException {

 BufferedReader br=new BufferedReader(new
InputStreamReader(System.in));
 System.out.print("Enter first value: ");
 float value1=Float.parseFloat(br.
readLine());

 public float calculation(float x, float y){
 return x*y;
 }
}// End of Multiplication class.

Strategy Pattern ◾ 123

C# Strategy Pattern
Participants
This pattern’s classes and objects are as follows:

1. Strategy (SortStrategy)

• It specifies an interface that is shared by all supported algorithms.
Context calls the algorithm provided by a ConcreteStrategy using
this interface.

2. ConcreteStrategy (QuickSort, ShellSort, MergeSort)

• The Strategy interface is used to implement the algorithm.

3. Context (SortedList)

• It contains a ConcreteStrategy object.

• It keeps a reference to a Strategy object.

• It may specify an interface via which Strategy can access its data.

C# Structural Code

This structural code exemplifies the Strategy Pattern, which encapsu-
lates functionality in an object. This enables clients to modify algorithmic
strategies.

 System.out.print("Enter second value: ");
 float value2=Float.parseFloat(br.
readLine());
 Context context = new Context(new
Addition());
 System.out.println("The Addition is = " +
context.executeStrategy(value1, value2));

 context = new Context(new Subtraction());
 System.out.println("Subtraction = " +
context.executeStrategy(value1, value2));

 context = new Context(new Multiplication());
 System.out.println("The Multiplication is =
" + context.executeStrategy(value1, value2));
 }

}// End of StrategyPatternDemo class.

124 ◾ Software Design Patterns: The Ultimate Guide

using System;

namespace Strategy.Structural
{
 /// <summary> Strategy Design Pattern </summary>

 public class Program
 {
 public static void Main(string[] args)
 {
 Context context;

 // Three contexts following the different
strategies

 context = new Context(new ConcreteStrategyA());
 context.ContextInterface();

 context = new Context(new ConcreteStrategyB());
 context.ContextInterface();

 context = new Context(new ConcreteStrategyC());
 context.ContextInterface();

 // Wait for the user

 Console.ReadKey();
 }
 }

 /// <summary> The 'Strategy' abstract class </summary>

 public abstract class Strategy
 {
 public abstract void AlgorithmInterface();
 }

 /// <summary> A 'ConcreteStrategy' class </summary>

 public class ConcreteStrategyA : Strategy
 {
 public override void AlgorithmInterface()
 {
 Console.WriteLine(
 "Called ConcreteStrategyA.
AlgorithmInterface()");
 }
 }

Strategy Pattern ◾ 125

Real-World C# Code

The Strategy Pattern, which encapsulates sorting algorithms in the form of
sorting objects, is demonstrated in this real-world code. This enables clients
to change sorting techniques such as Quicksort, Shellsort, and Mergesort.

 /// <summary> A 'ConcreteStrategy' class </summary>

 public class ConcreteStrategyB : Strategy
 {
 public override void AlgorithmInterface()
 {
 Console.WriteLine(
 "Called ConcreteStrategyB.
AlgorithmInterface()");
 }
 }

 /// <summary> A 'ConcreteStrategy' class </summary>

 public class ConcreteStrategyC : Strategy
 {
 public override void AlgorithmInterface()
 {
 Console.WriteLine(
 "Called ConcreteStrategyC.
AlgorithmInterface()");
 }
 }

 /// <summary> The 'Context' class </summary>

 public class Context
 {
 Strategy strategy;
 // Constructor

 public Context(Strategy strategy)
 {
 this.strategy = strategy;
 }

 public void ContextInterface()
 {
 strategy.AlgorithmInterface();
 }
 }
}

126 ◾ Software Design Patterns: The Ultimate Guide

using System;
using System.Collections.Generic;

namespace Strategy.RealWorld
{
 /// <summary> Strategy Design Pattern </summary>

 public class Program
 {
 public static void Main(string[] args)
 {
 // Two contexts following the different strategies

 SortedList studentRecords = new SortedList();

 studentRecords.Add("Simran");
 studentRecords.Add("Rimmy");
 studentRecords.Add("Sarita");
 studentRecords.Add("Vicky");
 studentRecords.Add("Annaya");

 studentRecords.SetSortStrategy(new QuickSort());
 studentRecords.Sort();
 studentRecords.SetSortStrategy(new ShellSort());
 studentRecords.Sort();

 studentRecords.SetSortStrategy(new MergeSort());
 studentRecords.Sort();

 // Wait for the user

 Console.ReadKey();
 }
 }

 /// <summary> The 'Strategy' abstract class </summary>

 public abstract class SortStrategy
 {
 public abstract void Sort(List<string> list);
 }

 /// <summary> A 'ConcreteStrategy' class </summary>

 public class QuickSort : SortStrategy
 {
 public override void Sort(List<string> list)
 {

Strategy Pattern ◾ 127

 list.Sort(); // Default is Quicksort
 Console.WriteLine("QuickSorted list ");
 }
 }

 /// <summary> A 'ConcreteStrategy' class </summary>

 public class ShellSort : SortStrategy
 {
 public override void Sort(List<string> list)
 {
 //list.ShellSort(); not-implemented
 Console.WriteLine("ShellSorted list is");
 }
 }

 /// <summary> A 'ConcreteStrategy' class </summary>

 public class MergeSort : SortStrategy
 {
 public override void Sort(List<string> list)
 {
 //list.MergeSort(); not-implemented
 Console.WriteLine("MergeSorted list ");
 }
 }

 /// <summary> The 'Context' class </summary>

 public class SortedList
 {
 private List<string> list = new List<string>();
 private SortStrategy sortstrategy;

 public void SetSortStrategy(SortStrategy
sortstrategy)
 {
 this.sortstrategy = sortstrategy;
 }

 public void Add(string name)
 {
 list.Add(name);
 }

 public void Sort()
 {
 sortstrategy.Sort(list);

128 ◾ Software Design Patterns: The Ultimate Guide

In this chapter, we covered Strategy Pattern with relevant examples.

 // Iterate over list and display results

 foreach (string name in the list)
 {
 Console.WriteLine(" " + name);
 }
 Console.WriteLine();
 }
 }
}

129DOI: 10.1201/9781003308461-7

C h a p t e r 7

Proxy Pattern

IN THIS CHAPTER

 ➢ What is Proxy Pattern?

 ➢ Real-world examples

 ➢ Why is Proxy Pattern useful?

 ➢ Advantages/disadvantages

 ➢ Implementation in Python

 ➢ UML diagram

In the previous chapter, we covered Strategy Pattern, and in this chapter,
we will discuss Proxy Pattern with advantages, disadvantages, UML, and
its implementation.

Proxy Design Patterns are classified as Structural Design Patterns.
It essentially provides an interface to real objects of various types, such
as networking, large memory, files, etc. The Proxy class sits between the
requester and the supplier. The Proxy server is the greatest illustration of
this pattern when serving web requests. When a new request arrives at the
Proxy server, it is evaluated before being forwarded to the proper server
and receiving a response to return to the requester. This Proxy server also
offers enhanced security and other features.

https://doi.org/10.1201/9781003308461-7

130 ◾ Software Design Patterns: The Ultimate Guide

The Proxy Pattern can apply in the following situations:

• When constructing a complicated system, it is beneficial to provide a
proxy interface for the benefit of the client.

• When we want more protection before approaching genuine items.

• When we require secure access to numerous servers from a single
server.

• To prevent having to load heavy memory actual objects before they
were required.

Let’s look at an example of the Proxy Pattern before getting into the aca-
demic description.

Have you ever gone through a door with an access card? There are other
ways to unlock that door, including using an access card or hitting a but-
ton that bypasses the security system. The door’s primary role is to open,
however, a proxy has been put on top of it to provide other functions. Let
me demonstrate this using the code sample below.

The code line above illustrates the previous example. The Door class has
only one method, the open method, which represents the operation of
opening the Door object. This function is expanded in the SecuredDoor
class, and we’ve simply added a print statement to the latter class’s method
in this example.

class Door:
 def open_method(self) -> None:
 pass

class SecuredDoor:
 def __init__(self) -> None:
 self._klass = Door()

 def open_method(self) -> None:
 print(f"Adding the security measure to method of
{self._klass}")

secured_door = SecuredDoor()
secured_door.open_method()

Proxy Pattern ◾ 131

Take note of how SecuredDoor invoked the class Door via composi-
tion. With the Proxy Pattern, we may replace the primary object with the
proxy object without making any further code modifications. The Liskov
Substitution Principle is followed here. It reads as follows:

• A superclass’s objects must be interchangeable with objects from its sub-
classes without causing the application to break. This necessitates that the
objects of our subclasses behave similarly to the objects of our superclass.

• The SecuredDoor class can replace the Door object, and it does not
provide any new methods; instead, it extends the functionality of the
Door class’s open method.

In simple terms, a class that uses the Proxy Pattern represents the func-
tionality of another class.

WHY WOULD WE USE IT?
The Loose Coupling Proxy style allows us to easily detach our main logic
from any additional functionality that may be required. The modular
design of the code makes it much easier to maintain and enhance the func-
tionality of our primary logic.

Assume we’re creating a division function that accepts two integers as
parameters and returns the result of dividing them. It also handles and
logs edge situations such as ZeroDivisionError and TypeError.

import logging
from typing import Union

logging.basicConfig(level=logging.INFO)

def division(a: Union[int, float], b: Union[int, float]) ->
float:
 try:
 result = c / d
 return result

 except ZeroDivisionError:
 logging.error(f"Argument d can't be {d}")

 except TypeError:
 logging.error(f"Arguments must integers/floats")

print(division(2.9, 2))

132 ◾ Software Design Patterns: The Ultimate Guide

This function is already executing three things at once, which is a viola-
tion of the Single Responsibility Principle (SRP). According to SRP, a func-
tion or class should only change for one reason. A change in any of the three
duties in this scenario might compel the function to alter. This also implies
that modifying or extending the function might be difficult to track.

We can instead create two classes. The main class Division will simply
implement the essential logic, while the ProxyDivision class will enhance
Division’s capabilities by adding exception handlers and logs.

Because the Division and ProxyDivision classes implement the same inter-
face in the example above, we may replace Division with ProxyDivision
and vice versa. The second class does not directly inherit from the first
class and does not add any new methods to it. This means you can simply
enhance the functionality of the Division or DivisionProxy classes with-
out having to modify their underlying logic.

import logging
from typing import Union

logging.basicConfig(level=logging.INFO)

class Division:
 def div(self, c: Union[int, float], d: Union[int,
float]) -> float:
 return c / d

class ProxyDivision:
 def __init__(self) -> None:
 self._klass = Division()

 def div(self, c: Union[int, float], d: Union
[int, float]) -> float:
 try:
 result = self._klass.div(c, d)
 return result

 except ZeroDivisionError:
 logging.error(f"Argument d cannot be {d}")

 except TypeError:
 logging.error(f"Arguments must integers/floats")

klass = ProxyDivision()
print(klass.div(12, 0))

Proxy Pattern ◾ 133

BETTER TESTABILITY
Another significant benefit of the proxy design is increased testability.
Because our core logic and extra features are loosely connected, you may
test them individually. This simplifies and modularizes the test. With our
previously stated Division and ProxyDivision classes, demonstrating the
benefits is simple. The primary class’s logic is simple to understand, and
because it only contains the basic logic, it’s critical to create unit tests for
it before testing the other functions. It’s far easier to test the Division class
than it is to test the previously described division function, which tries to
accomplish several things at once. After we’ve finished testing the main
class, we may go on to the other features. Unit tests are usually more reli-
able and rigorous as a result of isolating key functionality from the cruft
and encapsulation of extra features.

INTERFACE USING PROXY PATTERN
Our class won’t look like the basic Division class with only one method in
the real world. Typically, our major class will have several methods and
perform multiple complex tasks. We’ve probably figured out that the proxy
classes must implement all of the primary class’s methods by now. When
creating a proxy class for a complex primary class, the author may neglect
to implement all of the original class’s methods. This will result in a Proxy
Pattern violation. In addition, if the primary class is huge and intricate, it
may be difficult to follow all of its methods.

The solution is an interface that notifies the proxy class’s author of all
the methods that must implement. An interface is a generic class that spec-
ifies all of the methods that a concrete class must implement. Interfaces,
on the other hand, cannot be started individually. We’ll need to create an
interface subclass and implement all of the functions there. If our subclass
fails to implement any of the interface’s methods, an error will raise. Let’s
look at a simple example of how to use Python’s xyz.XYZ and xyz.abstract-
method to create an interface and achieve the Proxy Pattern.

from xyz import XYZ, abstractmethod

class Interface(XYZ):
 """Interfaces of Interface, Concrete & Proxy should
 be same, because client should be able to use
 Concrete or Proxy without any change in their internals.
 """

134 ◾ Software Design Patterns: The Ultimate Guide

As we can see from the sequence above, we’ll need to create an Interface
class first. The ABC module in Python offers abstract foundation classes.
Interface is an abstract class that inherits from ABC and defines all of the
methods that the concrete class must implement afterward. The concrete
class inherited the interface, which implements all of the methods defined
in it. The @abstractmethod decorator is used to adorn each method in the
Interface class. If we’re not sure what a decorator is, check out this page
on Python decorators. The @abstractmethod decorator converts a regular
method into an abstract method, which implies it’s only a blueprint for the
needed methods that the concrete subclass will have to implement later.

 @abstractmethod
 def job_x(self, user: str) -> None:
 pass

 @abstractmethod
 def job_y(self, user: str) -> None:
 pass

class Concrete(Interface):
 """This is the main job doer. External services like
 payment gateways can good example.
 """

 def job_x(self, user: str) -> None:
 print(f"We are doing the job_x for {user}")

 def job_y(self, user: str) -> None:
 print(f"We are doing the job_y for {user}")

class Proxy(Interface):
 def __init__(self) -> None:
 self._concrete = Concrete()

 def job_a(self, user: str) -> None:
 print(f"We're extending job_x for user {user}")

 def job_b(self, user: str) -> None:
 print(f"We're extending job_y for user {user}")

if __name__ == "__main__":
 klass = Proxy()
 print(klass.job_x("red"))
 print(klass.job_y("nafi"))

Proxy Pattern ◾ 135

We can’t utilize any of the abstract methods or instantiate Interface with-
out first creating subclasses and implementing the methods.

Concrete is the real class that inherits from the abstract base class (inter-
face) Interface and implements all of the abstract methods described. This
is a genuine class that we can instantiate and utilize the methods. We’ll get
TypeError if we neglect to implement any of the abstract methods speci-
fied in the Interface.

The base concrete class Concrete functionality is extended by the third class
Proxy. It uses the composition pattern to call the Concrete class and imple-
ments all of the methods. In this case, though, we took the outputs of the con-
crete methods and increased their functionality without duplicating code.

ANOTHER USEFUL EXAMPLE
Let’s experiment with one last real-world example to solidify the notion
further. Assume you wish to get information from an external API end-
point. Use our http client to send GET queries to the endpoint and gather
the results in json format. Then assume we want to look at the response
header and the arguments given during the request.

Public APIs frequently impose rate restrictions in the real world, and our
client will most certainly throw an http connection-timeout error if you
exceed the limit with multiple get requests. For example, suppose we wish
to manage errors outside of the main logic that sends http GET queries.

Let’s imagine we want to cache the answers if the client has already seen
the arguments in the requests. This implies that instead of hitting the APIs
with repetitive queries, the client will display the replies from the cache
when we submit requests with the same parameters several times. Caching
significantly reduces API response time.

We’ll be utilizing Postman’s publicly available GET API for this example.

Because it contains a rate limitation that kicks in at random and causes the
client to raise ConnectTimeOut and ReadTimeOutError, this API is ideal
for the example. Take a look at how this routine will work:

• Define the IFetchUrl interface, which will implement three abstract
methods. The first method, get data, retrieves data from a URL, and
serialize it in json format. The second function, get headers, will

https://postman-echo.com/get?foo1=bar_1&foo2=bar_2

https://postman-echo.com

136 ◾ Software Design Patterns: The Ultimate Guide

probe the data and return a dictionary with the header. The third
function, get args, will explore the data in the same way as the sec-
ond method, but will return the query arguments as a dictionary
this time. However, we will not be implementing anything inside the
methods of the interface.

• Make a concrete class called FetchUrl that inherits from the
IFetchUrl interface. This time, we’ll implement all three of the
abstract class’s methods. However, no edge situations should han-
dle here. The method should have only a logic flow and no other
information.

• Create an ExcFetchUrl proxy class. It will inherit from the interface
as well, but we will add our exception handling mechanism here
this time. All of the methods in this class now include logging capa-
bilities. We use the methods that have already been implemented in
the concrete class to call the concrete class FetchUrl in a composi-
tion format, avoiding code repetition. You must implement all of
the methods in the abstract class, just as we must in the FetchUrl
class.

• The fourth and final class extends ExcFetchUrl and adds caching to
the get data method. It will behave similarly to the ExcFetchUrl class.

Since you’re already aware of the Proxy Pattern’s approach, we’ll dump the
complete 110-line solution at once.

import logging
import sys
from xyz import XYZ, abstractmethod
from datetime import datetime
from pprint import pprint

import httpx
from httpx._exceptions import ConnectTimeout, ReadTimeout
from functools import lru_cache

logging.basicConfig(level=logging.INFO)

class IFetchUrl(XYZ):
 """Abstract base class. We can't instantiate this
independently"""

Proxy Pattern ◾ 137

 @abstractmethod
 def get_data(self, url: str) -> dict:
 pass

 @abstractmethod
 def get_headers(self, data: dict) -> dict:
 pass

 @abstractmethod
 def get_args(self, data: dict) -> dict:
 pass

class FetchUrl(IFetchUrl):
 """Concrete class that does not handle exceptions and
loggings"""

 def get_data(self, url: str) -> dict:
 with httpx.Client() as client:
 response = client.get(url)
 data = response.json()
 return data

 def get_headers(self, data: dict) -> dict:
 return data["headers"]

 def get_args(self, data: dict) -> dict:
 return data["args"]

class ExcFetchUrl(IFetchUrl):
 """This class can swap out with the FetchUrl class.
 It provides additional exception handling and logging."""

 def __init__(self) -> None:
 self._fetch_url = FetchUrl()

 def get_data(self, url: str) -> dict:
 try:
 data = self._fetch_url.get_data(url)
 return data

 except ConnectTimeout:
 logging.error("Connection time-out. Try again
later.")
 sys.exit(1)

 except ReadTimeout:
 logging.error("Read timed-out. Try again later.")
 sys.exit(1)

138 ◾ Software Design Patterns: The Ultimate Guide

We used the excellent httpx client to get data from the URL in the FetchUrl
class’s get data function. Keep in mind that we’ve mostly neglected all
of the additional logic of error handling and reporting in this example.

 def get_headers(self, data: dict) -> dict:
 headers = self._fetch_url.get_headers(data)
 logging.info(f"Getting the headers at {datetime.
now()}")
 return headers

 def get_args(self, data: dict) -> dict:
 args = self._fetch_url.get_args(data)
 logging.info(f"Getting the args at {datetime.now()}")
 return args

class CacheFetchUrl(IFetchUrl):
 def __init__(self) -> None:
 self._fetch_url = ExcFetchUrl()

 @lru_cache(maxsize=32)
 def get_data(self, url: str) -> dict:
 data = self._fetch_url.get_data(url)
 return data

 def get_headers(self, data: dict) -> dict:
 headers = self._fetch_url.get_headers(data)
 return headers

 def get_args(self, data: dict) -> dict:
 args = self._fetch_url.get_args(data)
 return args

if __name__ == "__main__":

 # url = "https://postman-echo.com/
get?foo1=bar_1&foo2=bar_2"

 fetch = CacheFetchUrl()
 for arg1, arg2 in zip([11, 12, 13, 11, 12, 13], [11,
12, 13, 11, 12, 13]):
 url = f"https://postman-echo.com/
get?foo1=bar_{arg1}&foo2=bar_{arg2}"
 print(f"\n {'-'*75}\n")
 data = fetch.get_data(url)
 print(f"Cache Info: {fetch.get_data.cache_info()}")
 pprint(fetch.get_headers(data))
 pprint(fetch.get_args(data))

https://postman-echo.com
https://postman-echo.com
https://postman-echo.com
https://postman-echo.com

Proxy Pattern ◾ 139

The ExcFetchUrl proxy class was used to provide exception handling
and logging logic. CacheFetchUrl is a class that extends the proxy class
ExcFetchUrl by adding cache capabilities to the get_data method.

In the main part, we can utilize any of the FetchUrl, ExcFetchUrl, or
CacheFetchUrl classes without modifying their functionality. The FetchUrl
is the barebone class that will fail in case of any exceptions. Later classes
offer extra functionality while keeping the same interface.

The output just outputs the results of the get headers and get args func-
tions. Take note of how we choose the endpoint arguments to mimic cach-
ing. On the third line of the report, the Cache Info: displays when data
is served from the cache. Here, hits=0 indicates that the data is supplied
straight from the external API. However, if we look at the later results, we
can see that when the query inputs are repeated ([11, 12, 13, 11, 12, 13]),
Cache Info: displays larger hit counts. This indicates that the information
is being provided from the cache.

UML of Proxy Pattern

HOW SHOULD THE PROXY PATTERN BE IMPLEMENTED?
Let’s have a look at how to use the Proxy Pattern.

class Image:
 def __init__(self, filename):
 self._filename = filename
 def load_image_from_disk(self):
 print("Loading " + self._filename)
 def display_image(self):
 print("display " + self._filename)

140 ◾ Software Design Patterns: The Ultimate Guide

class Proxy:
 def __init__(self, subject):
 self._subject = subject
 self._proxystate = None
class ProxyImage(Proxy):
 def display_image(self):
 if self._proxystate == None:
 self._subject.load_image_from_disk()
 self._proxystate = 1
 print("display " + self._subject._filename)
proxy_image1 = ProxyImage (Image("HiRes_10Mb_Photo1"))
proxy_image2 = ProxyImage (Image("HiRes_10Mb_Photo2"))
proxy_image1.display_image() # loading-necessary
proxy_image1.display_image() # loading-unnecessary
proxy_image2.display_image() # loading-necessary
proxy_image2.display_image() # loading-unnecessary
proxy_image1.display_image() # loading-unnecessary

ADVANTAGES

• Open/Closed Principle: We can simply incorporate new proxies into
our application without modifying the client code.

• Smooth Service: The Proxy we establish works even if the service
object is not ready or is not available in the present context.

• Security: The proxy mechanism also provides system security.

• Speed: It improves application performance by reducing the
duplication of objects that may be large in size and memory
expensive.

DISADVANTAGES

• Slow or Delayed Response: It is conceivable that the service will
become slow or delayed.

• The Layer of Abstraction: This approach adds another layer of
abstraction, which might be problematic if some customers access
the RealSubject code directly while others access the Proxy classes.

• Increased Complexity: Due to the addition of many additional
classes, our code may become quite complex.

Proxy Pattern ◾ 141

APPLICABILITY

• Virtual Proxy: Most commonly used in databases, for example, cer-
tain high-resource-consuming data exists in the database and we
require it regularly. So, in this case, we can use the Proxy Pattern to
generate numerous proxies that refer to the object.

• Protective Proxy: It puts a protective layer over the application and
may be used in schools or colleges where only a limited number of
websites are permitted to be accessed through WiFi.

• Distant Proxy: This is very useful when the service object is on a
remote server. In such circumstances, the Proxy forwards the client
request across the network while managing all of the information.

Smart proxies give extra security to applications by interfering with cer-
tain activities whenever an item is accessed.

In Java, the Proxy Pattern is used as follows:

• It may be utilized in a Virtual Proxy scenario considering a case where
numerous database calls are required to retrieve a large picture. Because
this is a costly procedure, we can utilize the Proxy Pattern to generate
many proxies that refer to the large memory-consuming object for fur-
ther processing. The actual object is produced only when a client requests/
accesses it, and we can then refer to the Proxy to reuse the object. This
prevents the item from being duplicated, so conserving memory.

• It may utilize in a Protective Proxy scenario; it functions as an
authorization layer to determine whether or not the real user has
access to the proper material. For example, a Proxy server that
restricts Internet access in the workplace. Only legitimate websites
and material will be permitted, while the rest will be prohibited.

• It may utilize in the Remote Proxy scenario. A remote proxy can be
considered the stub in the RPC call. The remote Proxy offers a local
representation of the item present at each address point. Another
example is providing an interface for distant resources like web ser-
vices or REST resources.

• It may utilize in a Smart Proxy scenario. A smart proxy adds an
extra layer of protection by performing specific actions when an item
is accessed. For example, before accessing an actual object, check
whether it is locked so that no other objects may modify it.

142 ◾ Software Design Patterns: The Ultimate Guide

IMPLEMENTATION

• Step 1: Create an interface for OfficeInternetAccess.

• Step 2: Create a RealInternetAccess class that implements the
OfficeInternetAccess interface to provide authorization to a specific
employee.

File: RealInternetAccess.java

• Step 3: Create a ProxyInternetAccess class that implements the
OfficeInternetAccess interface and provides the RealInternetAccess
class’s object.

File: ProxyInternetAccess.java

public interface OfficeInternetAccess {
 public void grantInternetAccess();
}

public class RealInternetAccess implements
OfficeInternetAccess {
 private String employeeName;
 public RealInternetAccess(String empName) {
 this.employeeName = empName;
 }
 @Override
 public void grantInternetAccess() {
 System.out.println("Internet Access granted for
the employee: "+ employeeName);
 }
}

public class ProxyInternetAccess implements
OfficeInternetAccess {
 private String employeeName;
 private RealInternetAccess realaccess;
 public ProxyInternetAccess(String employeeName) {
 this.employeeName = employeeName;
}
@Override

Proxy Pattern ◾ 143

• Step 4: Now, create a ProxyPatternClient class that can really con-
nect to the internet.

File: ProxyPatternClient.java

C# Proxy Pattern
Participants
This pattern’s classes and objects are as follows:

1. Proxy (MathProxy):

• Keeps a reference to the actual topic that allows the Proxy to
access it. If the RealSubject and Subject interfaces are the same,
Proxy may refer to a Subject.

public void grantInternetAccess()
{
 if (getRole(employeeName) > 4)
 {
 realaccess = new RealInternetAccess(employeeN
ame);
 realaccess.grantInternetAccess();
 }
 else
 {
 System.out.println("No Internet access is
granted. Our job level is below 5");
 }
}
public int getRole(String emplName) {
 // Check role from database based on Name and
designation
 // return the job level or job designation.
 return 9;
}
}

public class ProxyPatternClient {
 public static void main(String[] args)
 {
 OfficeInternetAccess access = new
ProxyInternetAccess("Kashia Kaur");
 access.grantInternetAccess();
 }
}

144 ◾ Software Design Patterns: The Ultimate Guide

• Offers an interface that is identical to Subject’s so that a proxy
may be used in place of the genuine subject.

• Controls access to the actual subject and may be in charge of its
creation and deletion.

• Other responsibilities vary according to the kind of proxy:

– Remote proxies are in charge of encrypting a request and its
parameters and relaying the encoded request to the true sub-
ject in another address space.

– Virtual proxies may store extra information about the actual
topic to delay access to it. The ImageProxy from Motivation,
for example, caches the extent of the actual pictures.

– Protection proxies ensure that the caller has the necessary
access rights to complete a request.

2. Subject (IMath):

• Offers a standard interface for RealSubject and Proxy, allowing a
Proxy to be used anywhere a RealSubject is expected.

3. RealSubject (Maths):

• Specifies the real object that the proxy represents.

C# Structural Code

The Proxy Pattern is demonstrated in this structured code, which gives a
symbolic object (proxy) that controls access to another comparable object.

using System;

namespace Proxy.Structural
{
 /// <summary> Proxy Design Pattern </summary>

 public class Program
 {
 public static void Main(string[] args)
 {
 // Create proxy and request service

Proxy Pattern ◾ 145

 Proxy proxy = new Proxy();
 proxy.Request();

 // Wait for the user

 Console.ReadKey();
 }
 }

 /// <summary> The 'Subject' abstract class </summary>

 public abstract class Subject
 {
 public abstract void Request();
 }

 /// <summary> The 'RealSubject' class </summary>

 public class RealSubject : Subject
 {
 public override void Request()
 {
 Console.WriteLine("Called RealSubject.
Request()");
 }
 }

 /// <summary> The 'Proxy' class </summary>

 public class Proxy : Subject
 {
 private RealSubject realSubject;

 public override void Request()
 {
 // Use the 'lazy initialization'

 if (realSubject == null)
 {
 realSubject = new RealSubject();
 }

 realSubject.Request();
 }
 }
}

146 ◾ Software Design Patterns: The Ultimate Guide

Real-World C# Code

The Proxy Pattern is demonstrated in this real-world code for a Math
object represented by a MathProxy object.

using System;

namespace Proxy.RealWorld
{
 /// <summary> Proxy Design Pattern </summary>

 public class Program
 {
 public static void Main(string[] args)
 {
 // Create the math proxy

 MathProxy proxy = new MathProxy();

 // Do math

 Console.WriteLine("5 + 2 = " + proxy.Add(5, 2));
 Console.WriteLine("5 - 2 = " + proxy.Sub(5, 2));
 Console.WriteLine("5 * 2 = " + proxy.Mul(5, 2));
 Console.WriteLine("5 / 2 = " + proxy.Div(5, 2));

 // Wait for the user

 Console.ReadKey();
 }
 }

 /// <summary> The 'Subject interface </summary>

 public interface IMath
 {
 double Add(double a, double b);
 double Sub(double a, double b);
 double Mul(double a, double b);
 double Div(double a, double b);
 }

 /// <summary> The 'RealSubject' class </summary>

 public class Math : IMath
 {
 public double Add(double a, double b)
{ return a + b; }

Proxy Pattern ◾ 147

This chapter covered Proxy Pattern with possible implementation, UML
representation, advantages, and disadvantages.

 public double Sub(double a, double b)
{ return a - b; }
 public double Mul(double a, double b)
{ return a * b; }
 public double Div(double a, double b)
{ return a / b; }
 }

 /// <summary> The 'Proxy Object' class </summary>

 public class MathProxy : IMath
 {
 private Math math = new Math();

 public double Add(double a, double b)
 {
 return math.Add(a, b);
 }
 public double Sub(double a, double b)
 {
 return math.Sub(a, b);
 }
 public double Mul(double a, double b)
 {
 return math.Mul(a, b);
 }
 public double Div(double a, double b)
 {
 return math.Div(a, b);
 }
 }
}

https://taylorandfrancis.com

149DOI: 10.1201/9781003308461-8

C h a p t e r 8

Bridge Pattern

IN THIS CHAPTER

 ➢ What is Bridge Pattern?

 ➢ Real-world examples

 ➢ Why is Bridge Pattern useful?

 ➢ Advantages/disadvantages

 ➢ Implementation in Python

 ➢ UML diagram

In the previous chapter, we covered Proxy Pattern, and in this chapter, we
will discuss Bridge Pattern with advantages, disadvantages, UML, and its
implementation.

The Bridge Pattern is a Structural Design Pattern that allows us to
separate Implementation Specific Abstractions from Implementation
Independent Abstractions and develop them as independent entities.

The Bridge Pattern is widely regarded as one of the most effective strate-
gies for organizing class hierarchies.

BRIDGE DESIGN PATTERN ELEMENTS

• Abstraction: It is the heart of the Bridge Design Pattern and serves
as a point of reference for the implementer.

https://doi.org/10.1201/9781003308461-8

150 ◾ Software Design Patterns: The Ultimate Guide

Refined Abstraction takes the finer details one step above and hides
the finer element from the implementers, extending the abstraction
to a new level.

• Implementer: It is responsible for defining the interface for imple-
mentation classes. This interface does not have to be identical to the
abstraction interface and might be rather different.

• Concrete Implementation: The implementer above is implemented
using concrete implementation.

THE INSPIRATION FOR THE BRIDGE DESIGN PATTERN
The Bridge Pattern prevents a phenomenon known as cartesian product
complexity explosion.

Using an example, the issue will become clear. Assume you’re working
on an Airplane. It might be either a military or a civilian jet. It can also be
a passenger/soldier or cargo plane.

One way to do this is to have a MilitaryPassenger, MilitaryCargo,
CommercialPassenger, and CommercialCargo aircraft.

The cartesian product complexity, in this case, is 2 × 2 = 4. This amount
isn’t groundbreaking at this size, but as additional classes and variants are
added, it may rapidly become unmanageable.

The Bridge Pattern provides a link between classes (Airplane imple-
mentation) and their properties (is it a passenger or cargo plane). It prefers
composition over inheritance.

We construct one class for each type in each category using the pattern.
In our scenario, we’d have CommercialPlane and MilitaryPlane entities
and CargoCarrier and PassengerCarrier entities.

We may not have accomplished much because we still have four
courses, but consider this on a scale. We can have nPlane classes, but only
CargoCarrier and PassengerCarrier can apply to these planes.

A preferable solution would be to have parent classes – Carrier and
Plane. We may construct two child classes for the Carrier parent class:
Cargo and Passenger. Similarly, there are two child classes for the Plane
parent class: Military and Commercial.

Next, we’ll need a means to link, or bridge, the Carrier and Plane sub-
classes. We can accomplish so by supplying one of these two classes as a
parameter value to the other class’s constructor. We’ll be able to mix any
of the subclasses by implementing the pattern.

Bridge Pattern ◾ 151

Finally, let’s look at how we can use Python to create the Bridge Design
Pattern.

USING PYTHON TO IMPLEMENT THE BRIDGE
DESIGN PATTERN
We will develop a Carrier parent class with two abstract methods: carry_
military() and carry_passenger(). Following that, we can make a Cargo
child class that inherits from the Carrier class and implements the carry_
military() and carry_commercial() methods.

To avoid creating variants of classes, we’ll build a Carrier with two
abstract methods: carry_military() and cary_passenger().

The Carrier class will also have two child classes, Cargo and Passenger,
which will inherit and implement its abstract methods:

Similarly, we’ll construct a Plane class with two abstract methods – dis-
play_description() and add_objects() and two child classes – Commercial

Passenger and Cargo Carriers

class Carrier:
 def carry_military(self, items):
 pass

 def carry_commercial(self, items):
 pass

class Cargo(Carrier):
 def carry_military(self, items):
 print("Plane carries ", items," military-cargo
goods")

 def carry_commercial(self, items):
 print("Plane carries ", items," commercial-cargo
goods")

class Passenger(Carrier):
 def carry_military(self, passengers):
 print("Plane carries ", passengers, " military-
passengers")

 def carry_commercial(self, passengers):
 print("Plane carries ", passengers, " commercial-
passengers")

152 ◾ Software Design Patterns: The Ultimate Guide

and Military. We’ll be supplying a Carrier to the Plane class’s constructor.
This is the bridge.

Cargo and Passenger will return carry commercial() if the plane is a
commercial plane, and vice versa.

The number of passengers/goods is saved in the self.objects variable and
supplied as a parameter to the carry commercial() method:

Our classes are prepped and ready. Now is the time to build some
objects and bridge them with one another using the previously described
constructor.

Military and Commercial Planes
class Plane:
 def __init__(self, Carrier):
 self.carrier = Carrier

 def display_description(self):
 pass

 def add_objects(self):
 pass

class Commercial(Plane):
 def __init__(self, Carrier, objects):
 super().__init__(Carrier)
 self.objects = objects

 def display_description(self):
 self.carrier.carry_commercial(self.objects)

 def add_objects(self, new_objects):
 self.objects += new_objects

class Military(Plane):
 def __init__(self, Carrier, objects):
 super().__init__(Carrier)
 self.objects = objects

 def display_description(self):
 self.carrier.carry_military(self.objects)

 def add_objects(self, new_objects):
 self.objects += new_objects

Bridge Pattern ◾ 153

Consider the following example:

We’ve created objects for the Cargo and Passenger classes here. The cargo
object was then supplied in a constructor call to the Military class. Because
it is a military plane, the cargo is classified as military cargo.

As a result, the display_description() function will print information
about the military cargo. In addition, we’ve added 28 extra items to this
load.

In a similar vein, we may cross the Military and Passenger classes:

Likewise, we may bridge Commercial and Passenger:

cargo = Cargo()
passenger = Passenger()

Bridging-Military and Cargo-classes
military1 = Military(cargo, 110)
military1.display_description()
military1.add_objects(28)
military1.display_description()

Bridging-Commercial and Passenger
commercial1 = Commercial(passenger, 420)
commercial1.display_description()
commercial1.add_objects(55)
commercial1.display_description()

cargo = Cargo()
passenger = Passenger()

Bridging-Military and Passenger-classes
military2 = Military(passenger, 280)
military2.display_description()
military2.add_objects(12)
military2.display_description()

154 ◾ Software Design Patterns: The Ultimate Guide

Finally, we can bridge the Commercial and Cargo classes:

A PROBLEM
Without applying the Bridge Pattern, there is a problem.

Consider the Cuboid class, which has three elements: length, breadth, and
height, as well as three methods: ProducewithAPI1(), ProduceWithAPI2(),
and expand ().

Producing methods are implementation-specific since we have two pro-
duction APIs, and one method, expand(), is implementation-independent.

We currently have two implementation-specific methods and one
implementation-independent method. Still, when the number grows (as it
would in a large-scale project), things will become difficult for the devel-
opers to manage.

Problem of Bridge Pattern.

Bridging-Commercial and Cargo
commercial2 = Commercial(cargo, 180)
commercial2.display_description()
commercial2.add_objects(18)
commercial2.display_description()

""" Without utilizing the bridge approach, write
We have a class with three attributes: length, width, and
height, as well as three methods: ProduceWithAPI1(),
ProduceWithAPI2(), and expand (). Because we have two
production APIs, several of these generating methods are
implementation-specific"""

Bridge Pattern ◾ 155

class Cuboid:

 class ProducingAPI1:

 """Implementation of Specific Implementation"""

 def produceCuboid(self, length, breadth, height):

 print(f'API1 is producing Cuboid with the
length = {length}, '
 f' Breadth = {breadth} and Height =
{height}')

 class ProducingAPI2:
 """Implementation of Specific Implementation"""

 def produceCuboid(self, length, breadth, height):
 print(f'API2 is producing Cuboid with the
length = {length}, '
 f' Breadth = {breadth} and Height =
{height}')

 def __init__(self, length, breadth, height):

 """Initialize the necessary attributes"""

 self._length = length
 self._breadth = breadth
 self._height = height

 def produceWithAPI1(self):

 """Implementation of specific Abstraction"""

 objectAPIone = self.ProducingAPI1()
 objectAPIone.produceCuboid(self._length, self._
breadth, self._height)

 def producewithAPI2(self):

 """Implementation of specific Abstraction"""

 objectAPItwo = self.ProducingAPI2()
 objectAPItwo.produceCuboid(self._length, self._
breadth, self._height)

 def expand(self, times):

156 ◾ Software Design Patterns: The Ultimate Guide

SOLUTION USING BRIDGE PATTERN
Now consider the answer to the preceding problem. Bridge Pattern is one
of the greatest solutions for such sort of difficulties. Our major objective is
to split apart the codes of implementation specific abstractions and imple-
mentation independent abstractions.

Solution of Bridge Pattern.

 """Implementation of independent Abstraction"""

 self._length = self._length * times
 self._breadth = self._breadth * times
 self._height = self._height * times

Instantiate a Cubiod
cuboid1 = Cuboid(2, 1, 3)

Draw it using APIone
cuboid1.produceWithAPI1()

Instantiate another Cuboid
cuboid2 = Cuboid(18, 22, 20)

Draw it using APItwo
cuboid2.producewithAPI2()

"""Bridge Method was used to implement the code.
We have a Cuboid class with three attributes: length,
width, and height, as well as three methods:
produceWithAPIOne(), produceWithAPITwo(), and expand(). Our
goal is to distinguish implementation-specific abstraction
from implementation-independent abstraction"""

class ProducingAPI1:

Bridge Pattern ◾ 157

 """Implementation of specific Abstraction"""

 def produceCuboid(self, length, breadth, height):

 print(f'API1 is producing Cuboid with the length =
{length}, '
 f' Breadth = {breadth} and Height = {height}')

class ProducingAPI2:

 """Implementation of specific Abstraction"""

 def produceCuboid(self, length, breadth, height):

 print(f'API2 is producing Cuboid with length =
{length}, '
 f' Breadth = {breadth} and Height = {height}')

class Cuboid:

 def __init__(self, length, breadth, height, producingAPI):

 """Initialize tnecessary attributes
 Implementation of independent Abstraction"""

 self._length = length
 self._breadth = breadth
 self._height = height

 self._producingAPI = producingAPI

 def produce(self):

 """Implementation of specific Abstraction"""

 self._producingAPI.produceCuboid(self._length,
self._breadth, self._height)

 def expand(self, times):

 """Implementation of independent Abstraction"""

 self._length = self._length * times
 self._breadth = self._breadth * times
 self._height = self._height * times

"""Instantiate cuboid and pass to it an
 object of ProducingAPIone"""

158 ◾ Software Design Patterns: The Ultimate Guide

UML DIAGRAM OF BRIDGE PATTERN

UML of Bridge Pattern.

REAL-WORLD BRIDGE DESIGN PATTERN
We can use a real-world example to understand the bridge Design Pattern
better. It’s very common these days. We get a charger with every smart-
phone we buy. The charger cable can now be separated, allowing us to use
it as a USB cable to connect to other devices.

ADVANTAGES
Bridge Pattern adheres to the Single Responsibility Principle by decou-
pling an abstraction from its implementation such that the two can alter
independently.

cuboid1 = Cuboid(2, 1, 3, ProducingAPI1())
cuboid1.produce()

cuboid2 = Cuboid(18, 18, 18, ProducingAPI2())
cuboid2.produce()

Bridge Pattern ◾ 159

It does not contradict the Open/Closed Principle since we may add
new abstractions and implementations separately from each other at any
moment. Platform independent feature: the Bridge Pattern is a simple way
to develop platform-independent functionalities.

DISADVANTAGES

• Complexity: Because we introduce new abstraction classes and inter-
faces, our code may get complex after using the Bridge technique.

• Double Indication: The Bridge Pattern may have a little negative
influence on performance since the abstraction requires messages to
be passed together with the implementation for the operation to be
completed.

• Interfaces with just one implementation: If we only have a few
interfaces, we don’t have to worry, but if we have an enormous col-
lection of interfaces with a minimum or only one implementation, it
becomes difficult to manage.

APPLICABILITY

• Run-time Binding: Generally, the Bridge Pattern is used to
provide the implementation’s run-time binding; run-time bind-
ing means that we can call a method at run-time rather than
compile-time.

• Class Mapping: To map the orthogonal class hierarchies, the Bridge
Pattern is used.

• UI Environment: A real-world application of the Bridge Pattern is
the definition of shapes in a UI Environment.

USAGE OF BRIDGE PATTERN

• When there is no need for a permanent connection between the
functional abstraction and its implementation.

• When both the functional concept and its implementation need
subclassing.

• It is generally utilized in situations where modifications to the imple-
mentation have no effect on the customers.

160 ◾ Software Design Patterns: The Ultimate Guide

Using the Bridge Pattern in Java

• Step 1: Create a Question interface that allows us to go from one
question to another or vice versa.

• Step 2: Make a JavaQuestions implementation class that implements
the Question interface.

// this is JavaQuestions class.
import java.util.ArrayList;
import java.util.List;
public class JavaQuestions implements Question {
 private List <String> questions = new
ArrayList<String>();
 private int current = 0;
 public JavaQuestions(){
 questions.add("What is the class? ");
 questions.add("What is the interface? ");
 questions.add("What is the abstraction? ");
 questions.add("How multiple polymorphism is
achieved in the java? ");
 questions.add("How many types of
exception handling are there in the java? ");
 questions.add("Define keyword final for
the variable, method, and class in the java? ");
 questions.add("What is the abstract class? ");
 questions.add("What is the multi-threading? ");
 }
 public void nextQuestion() {
 if(current <= questions.size()-1)
 current++;
 System.out.print(current);
 }

// this is Question interface.
public interface Question {
 public void nextQuestion();
 public void previousQuestion();
 public void newQuestion(String q);
 public void deleteQuestion(String q);
 public void displayQuestion();
 public void displayAllQuestions();
}
// End of Question interface.

Bridge Pattern ◾ 161

• Step 3: Create a QuestionManager class that will utilize the Question
interface as a bridge.

 public void previousQuestion() {
 if(current > 0)
 current--;
 }

 public void newQuestion(String quest) {
 questions.add(quest);
 }

 public void deleteQuestion(String quest) {
 questions.remove(quest);
 }

 public void displayQuestion() {
 System.out.println(questions.get(current));
 }
 public void displayAllQuestions() {
 for (String quest : questions) {
 System.out.println(quest);
 }
}
}// End of JavaQuestions class.

// this is QuestionManager class.
public class QuestionManager {
 protected Question q1;
 public String catalog;
 public QuestionManager(String catalog) {
 this.catalog=catalog;
 }
 public void next() {
 q1.nextQuestion();
 }
 public void previous() {
 q1.previousQuestion();
 }
 public void newOne(String quest) {
 q1.newQuestion(quest);
 }
 public void delete(String quest) {
 q1.deleteQuestion(quest);
 }

162 ◾ Software Design Patterns: The Ultimate Guide

• Step 4: Make a QuestionFormat class by extending the
QuestionManager class.

• Step 5: Make a class called BridgePatternDemo.

 public void display() {
 q1.displayQuestion();
 }
 public void displayAll() {
 System.out.println("Question Paper:
" + catalog);
 Q1.displayAllQuestions();
 }
}// End of QuestionManager class.

// this is BridgePatternDemo class.
public class BridgePatternDemo {
 public static void main(String[] args) {
 QuestionFormat questions = new
QuestionFormat("Java-Programming Language");
 questions.q1 = new JavaQuestions();
 questions.delete("what is the class?");
 questions.display();
 questions.newOne("What is the inheritance? ");

 questions.newOne("How many types of the inheritance
are there in the java?");
 questions.displayAll();
 }
}// End of BridgePatternDemo class.

// this is QuestionFormat class.
public class QuestionFormat extends QuestionManager {
 public QuestionFormat(String catalog){
 super(catalog);
 }
 public void displayAll() {
 System.out.println("\n-------------------");
 super.displayAll();
 System.out.println("---------------------");
 }
}// End of QuestionFormat class.

Bridge Pattern ◾ 163

Bridge Pattern in C#
Participants
This pattern’s classes and objects are as follows:

1. Abstraction (BusinessObject):

• Specifies the interface of the abstraction.

• Holds a reference to an Implementor object.

2. RefinedAbstraction (CustomersBusinessObject):

• Extends the Abstraction interface.

3. Implementor (DataObject):

• The interface for implementation classes is defined by the
Implementor (DataObject). This interface does not have to match
Abstraction’s interface exactly; the two interfaces might be rather
different. The Implementation interface often only offers rudi-
mentary operations, whereas Abstraction specifies higher-level
operations based on these primitives.

4. CustomersDataObject ConcreteImplementor:

• Implements the Implementor interface and describes its concrete
implementation.

C# Structural Code

The Bridge Pattern is used in this structural code to separate (decouples)
the interface from its implementation. The implementation can develop
without altering the clients that utilize the object’s abstraction.

using System;

namespace Bridge.Structural
{
 /// <summary> Bridge Design Pattern </summary>

 public class Program
 {
 public static void Main(string[] args)
 {

164 ◾ Software Design Patterns: The Ultimate Guide

 Abstraction abs = new RefinedAbstraction();

 // Set the implementation and call

 abs.Implementor = new ConcreteImplementorA();
 abs.Operation();

 // Change the implemention and call

 abs.Implementor = new ConcreteImplementorB();
 abs.Operation();

 // Wait for the user

 Console.ReadKey();
 }
 }

 /// <summary> The 'Abstraction' class </summary>

 public class Abstraction
 {
 protected Implementor implementor;

 public Implementor Implementor
 {
 set { implementor = value; }
 }

 public virtual void Operation()
 {
 implementor.Operation();
 }
 }

 /// <summary> The 'Implementor' abstract class </
summary>

 public abstract class Implementor
 {
 public abstract void Operation();
 }

 /// <summary> The 'RefinedAbstraction' class </summary>

 public class RefinedAbstraction : Abstraction
 {
 public override void Operation()

Bridge Pattern ◾ 165

Real-World C# Code

This real-world code exemplifies the Bridge Pattern, which decouples
a BusinessObject abstraction from its implementation in DataObject.
DataObject implementations can change dynamically without affecting
clients.

using System;
using System.Collections.Generic;

namespace Bridge.RealWorld
{
 /// <summary> Bridge Design Pattern </summary>

 public class Program
 {

 {
 implementor.Operation();
 }
 }

 /// <summary> The 'ConcreteImplementorX' class </summary>

 public class ConcreteImplementorX : Implementor
 {
 public override void Operation()
 {
 Console.WriteLine("ConcreteImplementorX
Operation");
 }
 }

 /// <summary> The 'ConcreteImplementorY' class </summary>

 public class ConcreteImplementorY : Implementor
 {
 public override void Operation()
 {
 Console.WriteLine("ConcreteImplementorY
Operation");
 }
 }
}

166 ◾ Software Design Patterns: The Ultimate Guide

 public static void Main(string[] args)
 {
 // Create the RefinedAbstraction

 var customers = new Customers();

 // Set the ConcreteImplementor

 customers.Data = new CustomersData("Chicago");

 // Exercise bridge

 customers.Show();
 customers.Next();
 customers.Show();
 customers.Next();
 customers.Show();
 customers.Add("Lenry Belasquez");

 customers.ShowAll();

 // Wait for the user

 Console.ReadKey();
 }
 }
 /// <summary> The 'Abstraction' class </summary>

 public class CustomersBase
 {
 private DataObject dataObject;

 public DataObject Data
 {
 set { dataObject = value; }
 get { return dataObject; }
 }

 public virtual void Next()
 {
 dataObject.NextRecord();
 }

 public virtual void Prior()
 {
 dataObject.PriorRecord();
 }

Bridge Pattern ◾ 167

 public virtual void Add(string customer)
 {
 dataObject.AddRecord(customer);
 }

 public virtual void Delete(string customer)
 {
 dataObject.DeleteRecord(customer);
 }

 public virtual void Show()
 {
 dataObject.ShowRecord();
 }

 public virtual void ShowAll()
 {
 dataObject.ShowAllRecords();
 }
 }

 /// <summary> The 'RefinedAbstraction' class </summary>

 public class Customers : CustomersBase
 {
 public override void ShowAll()
 {
 // Add the separator lines

 Console.WriteLine();
 Console.WriteLine("-------------");
 base.ShowAll();
 Console.WriteLine("-------------");
 }
 }

 /// <summary> The 'Implementor' abstract class </summary>

 public abstract class DataObject
 {
 public abstract void NextRecord();
 public abstract void PriorRecord();
 public abstract void AddRecord(string name);
 public abstract void DeleteRecord(string name);
 public abstract string GetCurrentRecord();
 public abstract void ShowRecord();
 public abstract void ShowAllRecords();
 }

168 ◾ Software Design Patterns: The Ultimate Guide

 /// <summary> The 'ConcreteImplementor' class </summary>

 public class CustomersData : DataObject
 {
 private readonly List<string> customers =
new List<string>();
 private int current = 0;
 private string city;

 public CustomersData(string city)
 {
 this.city = city;

 // Loaded from database

 customers.Add("Rim Tones");
 customers.Add("Ramual Lackson");
 customers.Add("Nllen Lkod");
 customers.Add("Enn Stills");
 customers.Add("Nisa Ciolani");
 }

 public override void NextRecord()
 {
 if (current <= customers.Count - 1)
 {
 current++;
 }
 }

 public override void PriorRecord()
 {
 if (current > 0)
 {
 current--;
 }
 }

 public override void AddRecord(string customer)
 {
 customers.Add(customer);
 }

 public override void DeleteRecord(string customer)
 {
 customers.Remove(customer);
 }

Bridge Pattern ◾ 169

This chapter covered Bridge Pattern with its benefits, demerits, implemen-
tation, and UML diagram.

 public override string GetCurrentRecord()
 {
 return customers[current];
 }

 public override void ShowRecord()
 {
 Console.WriteLine(customers[current]);
 }

 public override void ShowAllRecords()
 {
 Console.WriteLine("Customer City: " + city);

 foreach (string customer in customers)
 {
 Console.WriteLine(" " + customer);
 }
 }
 }
}

https://taylorandfrancis.com

171DOI: 10.1201/9781003308461-9

C h a p t e r 9

Adapter and
Façade Patterns

IN THIS CHAPTER

 ➢ What are Adapter and Facade Patterns?

 ➢ Real-world examples

 ➢ Why are Adapter and Facade Patterns useful?

 ➢ Advantages/disadvantages

 ➢ Implementation in Python

 ➢ UML diagram

In the previous chapter, we covered Bridge Pattern, and in this chapter, we
will explain Adapter and Façade Patterns.

ADAPTER PATTERN
The Adapter Pattern is a Structural Design Pattern that allows us to adapt
incompatible objects to each other. The Adapter Pattern is one of the sim-
plest to grasp because numerous real-world examples demonstrate the
analogy. The primary goal of this method is to build a link between two
incompatible interfaces. This method creates a new interface for a class.
We can grasp the concept more quickly if we consider the Cable Adapter,

https://doi.org/10.1201/9781003308461-9

172 ◾ Software Design Patterns: The Ultimate Guide

which allows us to charge our phones in locations with outlets of various
shapes.

A real-world example is a card reader, which performs as an adapter
between a memory card and a laptop. We insert the memory card into
the card reader and the card reader into the laptop to read the memory
card from the laptop. The adapter Design Pattern aids in the collaboration
of classes. It converts a class’s interface into another interface based on
the requirements. The pattern consists of speciation, a polymorphism, and
multiple forms. Consider a shape class that can use based on the require-
ments collected.

We can use this concept to integrate classes that could not be integrated
due to interface incompatibility.

USING THE ADAPTER PATTERN TO SOLVE A PROBLEM
Assume we’re developing an app that displays information about all of the
vehicles on the road. It retrieves data in XML format from various vehicle
organizations’ APIs and displays it.

But suppose we want to upgrade our application at some point with
Machine Learning algorithms that work beautifully on the data and only
retrieve the important data. However, there is a limitation: it only accepts
data in JSON format.

Making changes to the Machine Learning Algorithm so that it can
accept data in XML format is a terrible idea.

Problem without using Adapter Method.

Adapter and Façade Patterns ◾ 173

ADAPTER PATTERN SOLUTIONS
We can use the Adapter Pattern to help solve the problem we defined above
by creating an Adapter object.

In order to use an adapter in our code:

• The client should send a request to the adapter by invoking a method
on the target interface.

• The Adapter should translate that request on the adaptee using the
Adaptee interface.

• The client receives the result of the call and is unaware of the pres-
ence of the Adapter.

Dog - Bike
human - Truck
car - Car

class MotorBike:

 """Class for the MotorBike"""

 def __init__(self):
 self.name = "MotorBike"

 def TwoWheeler(self):
 return "TwoWheeler"

class Truck:

 """Class for the Truck"""

 def __init__(self):
 self.name = "Truck"

 def EightWheeler(self):
 return "EightWheeler"

class Car:

 """Class for the Car"""

174 ◾ Software Design Patterns: The Ultimate Guide

 def __init__(self):
 self.name = "Car"

 def FourWheeler(self):
 return "FourWheeler"

class Adapter:
 """
 Adapts objects by replacing the methods.
 Usage:
 motorCycle = MotorCycle()
 motorCycle = Adapter(motorCycle, wheels =
motorCycle.TwoWheeler)
 """

 def __init__(self, obj, **adapted_methods):
 """We set adapted methods in object's dict"""
 self.obj = obj
 self.__dict__.update(adapted_methods)

 def __getattr__(self, attr):
 """All non-adapted calls are passed to object"""
 return getattr(self.obj, attr)

 def original_dict(self):
 """Print original object dict"""
 return self.obj.__dict__

""" main-method """
if __name__ == "__main__":

 """list to store the objects"""
 objects = []

 motorBike = MotorBike()
 objects.append(Adapter(motorBike, wheels =
motorBike.TwoWheeler))

 truck = Truck()
 objects.append(Adapter(truck, wheels = truck.
EightWheeler))

 car = Car()
 objects.append(Adapter(car, wheels = car.
FourWheeler))

 for obj in objects:
 print("A {0} is a {1} vehicle".format(obj.name,
obj.wheels()))

Adapter and Façade Patterns ◾ 175

CLASS DIAGRAM

Class diagram of Adapter.

ADVANTAGES

• Principle of Single Responsibility: With the Adapter Method, we
can achieve the principle of Single Responsibility because we can
separate the concrete code from the client’s primary logic.

• Flexibility: The Adapter Pattern aids in the code’s flexibility and
reusability.

• Less Complicated Class: Because our client class does not have to
use a different interface, we can use polymorphism to switch between
different adapter implementations.

• Open/Closed principle: The Open/Closed principle is not violated
because we can incorporate the new Adapter classes into the code.

DISADVANTAGES

• The Complexity of the Code: As we introduce new classes, objects,
and interfaces, the complexity of our code increases.

176 ◾ Software Design Patterns: The Ultimate Guide

• Adaptability: Many adaptations with the adaptee chain are often
required to achieve the desired compatibility.

APPLICABILITY

• To make classes and interfaces compatible: The Adapter Pattern
is always used if we need to make definite classes compatible to
communicate.

• Inheritance-related: The Adapter Pattern can be used to reuse some
code, such as classes and interfaces that lack some functionality.

ADAPTER PATTERN USAGE
It is used as follows:

• When an object must use an existing class that has an incompatible
interface.

• When we need to develop a reusable class that works with classes that
do not have suitable interfaces.

• When we need to develop a reusable class that works with classes that
do not have suitable interfaces.

An Example of the Adapter Pattern in Java

• Step 1: Design a CreditCard interface (Target interface)

• Step 2: Make a class called BankDetails (Adaptee class)
File: BankDetails.java

// This is adapter class.
public class BankDetails{
 private String bankName;
 private String accHolderName;
 private long accNumber;

public interface CreditCard {
 public void giveBankDetails();
 public String getCreditCard();
}// End of CreditCard interface.

Adapter and Façade Patterns ◾ 177

• Step 3: Create a class called BankCustomer (Adapter class)
File: BankCustomer.java

// This is adapter class

import java.io.BufferedReader;
import java.io.InputStreamReader;
public class BankCustomer extends BankDetails
implements CreditCard {
 public void giveBankDetails(){
 try{
 BufferedReader br=new BufferedReader(new
InputStreamReader(System.in));

 System.out.print("Enter account holder name :");
 String customername=br.readLine();
 System.out.print("\n");

 System.out.print("Enter account number:");
 long accno=Long.parseLong(br.readLine());
 System.out.print("\n");

 System.out.print("Enter bank name :");
 String bankname=br.readLine();

 public String getBankName() {
 return bankName;
 }
 public void setBankName(String bankName) {
 this.bankName = bankName;
 }
 public String getAccHolderName() {
 return accHolderName;
 }
 public void setAccHolderName(String accHolderName) {
 this.accHolderName = accHolderName;
 }
 public long getAccNumber() {
 return accNumber;
 }
 public void setAccNumber(long accNumber) {
 this.accNumber = accNumber;
 }
}// End of BankDetails class.

178 ◾ Software Design Patterns: The Ultimate Guide

• Step 4: Make a class called AdapterPatternDemo (client class)
File: AdapterPatternDemo.java

Adapter Pattern in C#
Participants
This pattern’s classes and objects are as follows:

• Target (ChemicalCompound): Defines the domain-specific inter-
face that the Client uses.

• Adapter (Compound): Adapts the Adaptee interface to the Target
interface.

 setAccHolderName(customername);
 setAccNumber(accno);
 setBankName(bankname);
 }catch(Exception e){
 e.printStackTrace();
 }
 }
 @Override
 public String getCreditCard() {
 long accno=getAccNumber();
 String accholdername=getAccHolderName();
 String bname=getBankName();

 return ("Account number "+accno+" of
"+accholdername+" in the "+bname+ "
 bank is valid and
authenticated for the issuing the credit card. ");
 }
}//End of BankCustomer class.

//This is client class.
public class AdapterPatternDemo {
 public static void main(String args[]){
 CreditCard targetInterface=new BankCustomer();
 targetInterface.giveBankDetails();
 System.out.print(targetInterface.getCreditCard());
 }
 }//End of BankCustomer class.

Adapter and Façade Patterns ◾ 179

• Adaptee (ChemicalDatabase): Describes an existing interface that
has to be modified.

• Client (AdapterApp): Works with objects that adhere to the Target
interface.

C# Structural Code

This structure code exhibits the Adapter Pattern, which translates one
class’s interface onto another so that they can collaborate. These incom-
patible classes might be from various libraries or frameworks.

using System;

namespace Adapter.Structural
{
 /// <summary> Adapter Design Pattern </summary>

 public class Program
 {
 public static void Main(string[] args)
 {
 // Create the adapter and place a request

 Target target = new Adapter();
 target.Request();

 // Wait for the user

 Console.ReadKey();
 }

 }

 /// <summary> The 'Target' class </summary>

 public class Target
 {
 public virtual void Request()
 {
 Console.WriteLine("Called the Target
Request()");
 }
 }

 /// <summary> The 'Adapter' class </summary>

180 ◾ Software Design Patterns: The Ultimate Guide

Real-World C# Code

This real-world code shows how to use a legacy chemical databank.
Chemical compound objects communicate to the databank using an
Adapter interface.

 public class Adapter : Target
 {
 private Adaptee adaptee = new Adaptee();

 public override void Request()
 {
 // Possibly do some other work and then call
SpecificRequest

 adaptee.SpecificRequest();
 }
 }

 /// <summary> The 'Adaptee' class </summary>

 public class Adaptee
 {
 public void SpecificRequest()
 {
 Console.WriteLine("Called the
SpecificRequest()");
 }
 }
}

using System;

namespace Adapter.RealWorld
{
 /// <summary> Adapter Design Pattern </summary>

 public class Program
 {
 public static void Main(string[] args)
 {
 // Non-adapted the chemical compound

 Compound unknown = new Compound();
 unknown.Display();

Adapter and Façade Patterns ◾ 181

 // Adapted the chemical compounds

 Compound water = new RichCompound("Water");
 water.Display();

 Compound benzene = new RichCompound("Benzene");
 benzene.Display();

 Compound ethanol = new RichCompound("Ethanol");
 ethanol.Display();

 // Wait for the user

 Console.ReadKey();
 }
 }

 /// <summary> The 'Target' class </summary>

 public class Compound
 {
 protected float boilingPoint;
 protected float meltingPoint;
 protected double molecularWeight;
 protected string molecularFormula;

 public virtual void Display()
 {
 Console.WriteLine("\nCompound: Unknown --- ");
 }
 }

 /// <summary> The 'Adapter' class </summary>

 public class RichCompound : Compound
 {
 private string chemical;
 private ChemicalDatabank bank;

 // Constructor

 public RichCompound(string chemical)
 {
 this.chemical = chemical;
 }

 public override void Display()
 {

182 ◾ Software Design Patterns: The Ultimate Guide

 // Adaptee

 bank = new ChemicalDatabank();

 boilingPoint = bank.GetCriticalPoint(chemical,
"B");
 meltingPoint = bank.GetCriticalPoint(chemical,
"M");
 molecularWeight = bank.
GetMolecularWeight(chemical);
 molecularFormula = bank.GetMolecularStructure(c
hemical);

 Console.WriteLine("\nCompound: {0} ------ ",
chemical);
 Console.WriteLine(" Formula is: {0}",
molecularFormula);
 Console.WriteLine(" Weight is: {0}",
molecularWeight);
 Console.WriteLine(" Melting Pt is: {0}",
meltingPoint);
 Console.WriteLine(" Boiling Pt is: {0}",
boilingPoint);
 }
 }

 /// <summary> The 'Adaptee' class </summary>

 public class ChemicalDatabank
 {
 // databank 'legacy API'

 public float GetCriticalPoint(string compound,
string point)
 {
 // Melting Point
 if (point == "M")
 {
 switch (compound.ToLower())
 {
 case "water": return 0.1f;
 case "benzene": return 5.4f;
 case "ethanol": return -113.1f;
 default: return 0f;
 }
 }

 // Boiling-Point

Adapter and Façade Patterns ◾ 183

FACADE PATTERN
The Facade Pattern is a Structural Design Pattern that creates a more uni-
fied interface to a more complex system. The term Facade refers to the
face of a building or, more specifically, the outer lying interface of a com-
plex system composed of several subsystems. It is an important part of the
Gang of Four Design Patterns. It simplifies access to methods of the under-
lying systems by providing a single entry point. Consider a supermarket.

 else
 {
 switch (compound.ToLower())
 {
 case "water": return 101.0f;
 case "benzene": return 82.1f;
 case "ethanol": return 74.3f;
 default: return 0f;
 }
 }
 }

 public string GetMolecularStructure(string
compound)
 {
 switch (compound.ToLower())
 {
 case "water": return "H20";
 case "benzene": return "C6H6";
 case "ethanol": return "C2H5OH";
 default: return "";
 }
 }

 public double GetMolecularWeight(string compound)
 {
 switch (compound.ToLower())
 {
 case "water": return 18.035;
 case "benzene": return 77.1234;
 case "ethanol": return 45.0788;
 default: return 0d;
 }
 }
 }
}

184 ◾ Software Design Patterns: The Ultimate Guide

An inventory management system is used to organize items. However,
because the customer does not need to know about the inventory, it is
preferable that the customer ask the shopkeeper for a list of items, as the
shopkeeper knows where each item is located. The shopkeeper is acting as
the Facade interface in this case.

Here, we create a Facade layer that allows clients to easily communicate
with subsystems.

Façade Method.

A PROBLEM
Assume we have a washing machine that can wash, rinse, and spin
clothes, but it does each task separately. We must abstract the com-
plexities of the subsystems because the overall system is quite com-
plex. We require a system that can automate the entire task without our
interference.

Adapter and Façade Patterns ◾ 185

SOLUTION BASED ON THE FACADE PATTERN
We’d like to use the Facade Pattern to solve the problem described above.
It will aid us in hiding or abstracting the complexities of the subsystems
listed below.

The code below was written using the Facade Pattern.

"""Facade pattern with an example of the WashingMachine"""

class Washing:
 '''Subsystem # 1'''

 def wash(self):
 print("Washing")

class Rinsing:
 '''Subsystem # 2'''

 def rinse(self):
 print("Rinsing")

class Spinning:
 '''Subsystem # 3'''

 def spin(self):
 print("Spinning")

class WashingMachine:
 '''Facade'''

 def __init__(self):
 self.washing = Washing()
 self.rinsing = Rinsing()
 self.spinning = Spinning()

 def startWashing(self):
 self.washing.wash()
 self.rinsing.rinse()
 self.spinning.spin()

""" main-method """
if __name__ == "__main__":

 washingMachine = WashingMachine()
 washingMachine.startWashing()

186 ◾ Software Design Patterns: The Ultimate Guide

CLASS DIAGRAM FOR THE FACADE METHOD

Façade Method Class Diagram.

ADVANTAGES

• Isolation: Our code can be easily isolated from the complexities of a
subsystem.

• Testine Process: Using the Facade method simplifies the testing pro-
cess by providing convenient methods for common testing tasks.

• Loose Coupling: The presence of loose coupling between clients and
subsystems.

DISADVANTAGES

• Changes in Methods: As we know, subsequent methods in the
Facade method are attached to the Facade layer, and any change
in the subsequent method may cause a change in the Facade layer,
which is not desirable.

• Expensive Procedure: Establishing the Facade method in our appli-
cation for system reliability is not cheap.

• Rules Violation: There is always the risk of violating the Facade lay-
er’s construction.

Adapter and Façade Patterns ◾ 187

APPLICABILITY

• Providing a simple interface: One of the most important applica-
tions of the Facade method is to provide a simple interface to a com-
plex subsystem.

• Dividing the system into layers: It is used to provide a distinct struc-
ture to a subsystem by dividing it into layers. It also results in loose
coupling between clients and subsystem.

FACADE PATTERN USAGE
It is in use:

• When we need a simple interface to a complicated subsystem.

• When there are several dependencies between clients and an abstrac-
tion’s implementation classes.

Implementation in Java

• Step 1: Design a MobileShops interface.
File: MobileShop.java

• Step 2: Make an iPhone implementation class that implements the
Mobileshops interface.

File: Iphone.java

public interface MobileShops {
 public void modelNo();
 public void prices();
}

public class Iphone implements MobileShops {
 @Override
 public void modelNo() {
 System.out.println(" Iphone 11 ");
 }
 @Override
 public void prices() {
 System.out.println(" Rs 75000.00 ");
 }
}

188 ◾ Software Design Patterns: The Ultimate Guide

• Step 3: Make a Samsung implementation class that implements the
Mobileshops interface.

File: Samsung.java

• Step 4: Make a Blackberry implementation class that implements the
Mobileshops interface.

File: Blackberry.java

• Step 5: Make a concrete ShopKeeper class that implements the
MobileShops interface.

File: ShopKeeper.java

public class Samsung implements MobileShops {
 @Override
 public void modelNo() {
 System.out.println(" Samsung galaxy 5 ");
 }
 @Override
 public void prices() {
 System.out.println(" Rs 55000.00 ");
 }
}

public class Blackberry implements MobileShops {
 @Override
 public void modelNo() {
 System.out.println(" Blackberry 10 ");
 }
 @Override
 public void prices() {
 System.out.println(" Rs 65000.00 ");
 }
}

public class ShopKeeper {
 private MobileShops iphone;
 private MobileShops samsung;
 private MobileShops blackberry;

 public ShopKeeper(){

Adapter and Façade Patterns ◾ 189

• Step 6: Create a customer that can purchase mobiles from
MobileShops using ShopKeeper.

File: FacadePatternClient.java

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;

public class FacadePatternClient {
 private static int choice;
 public static void main(String args[]) throws
NumberFormatException, IOException{
 do{
 System.out.print("======= MobileShop ======= \n");
 System.out.print(" 1. IPHONE \n");
 System.out.print(" 2. SAMSUNG \n");
 System.out.print(" 3. BLACKBERRY \n");
 System.out.print(" 4. Exit \n");
 System.out.print("Enter our choice: ");

 BufferedReader br=new BufferedReader(new
InputStreamReader(System.in));
 choice=Integer.parseInt(br.readLine());
 ShopKeeper sk=new ShopKeeper();

 switch (choice) {
 case 1:
 {

 iphone= new Iphone();
 samsung=new Samsung();
 blackberry=new Blackberry();
 }
 public void iphoneSale(){
 iphone.modelNo();
 iphone.prices();
 }
 public void samsungSale(){
 samsung.modelNo();
 samsung.prices();
 }
 public void blackberrySale(){
 blackberry.modelNo();
 blackberry.prices();
 }
}

190 ◾ Software Design Patterns: The Ultimate Guide

Facade Pattern in C#
Participants
This pattern’s classes and objects include:

1. Facade (MortgageApplication):

• Understands which subsystem classes are in response to a request.

• Delegates client requests to appropriate subsystem objects

2. Subsystem classes (Bank, Credit, Loan):

• Subsystem functionality must implement.

• Handle the work assigned to us by the Facade object.

• Have no awareness of the facade and make no mention of it.

C# Structural Code

The Facade approach is demonstrated in this structural code, which gives
a simpler and standard interface to a vast subsystem of classes.

 sk.iphoneSale();
 }
 break;
 case 2:
 {
 sk.samsungSale();
 }
 break;
 case 3:
 {
 sk.blackberrySale();
 }
 break;
 default:
 {
 System.out.println("Nothing we purchased");
 }
 return;
 }

 }while(choice!=4);
 }
}

Adapter and Façade Patterns ◾ 191

using System;

namespace Facade.Structural
{
 /// <summary> Facade Design Pattern </summary>

 public class Program
 {
 public static void Main(string[] args)
 {
 Facade facade = new Facade();

 facade.MethodX();
 facade.MethodY();

 // Wait for the user

 Console.ReadKey();
 }
 }

 /// <summary> The 'Subsystem ClassX' class </summary>

 public class SubSystemOne
 {
 public void MethodOne()
 {
 Console.WriteLine(" SubSystemOne-Method");
 }
 }

 /// <summary> The 'Subsystem ClassY' class </summary>

 public class SubSystemTwo
 {
 public void MethodTwo()
 {
 Console.WriteLine(" SubSystemTwo-Method");
 }
 }

 /// <summary> The 'Subsystem ClassC' class </summary>

 public class SubSystemThree
 {
 public void MethodThree()
 {
 Console.WriteLine(" SubSystemThree-Method");

192 ◾ Software Design Patterns: The Ultimate Guide

 }
 }

 /// <summary> The 'Subsystem ClassD' class </summary>

 public class SubSystemFour
 {
 public void MethodFour()
 {
 Console.WriteLine(" SubSystemFour-Method");
 }
 }

 /// <summary> The 'Facade' class </summary>

 public class Facade
 {
 SubSystemOne one;
 SubSystemTwo two;
 SubSystemThree three;
 SubSystemFour four;

 public Facade()
 {
 one = new SubSystemOne();
 two = new SubSystemTwo();
 three = new SubSystemThree();
 four = new SubSystemFour();
 }

 public void MethodA()
 {
 Console.WriteLine("\nMethodX()- ");
 one.MethodOne();
 two.MethodTwo();
 four.MethodFour();
 }

 public void MethodY()
 {
 Console.WriteLine("\nMethodY()- ");
 two.MethodTwo();
 three.MethodThree();
 }
 }
}

Adapter and Façade Patterns ◾ 193

Real-World C# Code

This real-world code exhibits the Facade design as a MortgageApplication
object, which gives a streamlined interface to a large subsystem of classes
that assess an applicant’s creditworthiness.

using System;

namespace Facade.RealWorld
{
 /// <summary> Facade Design Pattern </summary>

 public class Program
 {
 public static void Main(string[] args)
 {
 // Facade

 Mortgage mortgage = new Mortgage();

 // Evaluate the mortgage eligibility for the
customer

 Customer customer = new Customer("Enn Kinsey");
 bool eligible = mortgage.IsEligible(customer,
145000);

 Console.WriteLine("\n" + customer.Name +
 " has " + (eligible? "Approved" :
"Rejected"));

 // Wait for the user

 Console.ReadKey();
 }
 }

 /// <summary> The 'Subsystem ClassX' class </summary>

 public class Bank
 {
 public bool HasSufficientSavings(Customer c, int
amount)
 {
 Console.WriteLine("Check bank for the " +
c.Name);
 return true;

194 ◾ Software Design Patterns: The Ultimate Guide

 }
 }

 /// <summary> The 'Subsystem ClassY' class </summary>

 public class Credit
 {
 public bool HasGoodCredit(Customer c)
 {
 Console.WriteLine("Check credit for the " +
c.Name);
 return true;
 }
 }

 /// <summary> The 'Subsystem ClassC' class </summary>

 public class Loan
 {
 public bool HasNoBadLoans(Customer c)
 {
 Console.WriteLine("Check loans for " + c.Name);
 return true;
 }
 }

 /// <summary> Customer class </summary>

 public class Customer
 {
 private string name;

 // Constructor

 public Customer(string name)
 {
 this.name = name;
 }

 public string Name
 {
 get { return name; }
 }
 }

 /// <summary> The 'Facade' class </summary>

 public class Mortgage

Adapter and Façade Patterns ◾ 195

This chapter covered Adapter and Façade Patterns with their implementa-
tion and representation.

 {
 Bank bank = new Bank();
 Loan loan = new Loan();
 Credit credit = new Credit();

 public bool IsEligible(Customer cust, int amount)
 {
 Console.WriteLine("{0} applies for {1:C}
loan\n",
 cust.Name, amount);

 bool eligible = true;

 // Check the creditworthyness of the applicant

 if (!bank.HasSufficientSavings(cust, amount))
 {
 eligible = false;
 }
 else if (!loan.HasNoBadLoans(cust))
 {
 eligible = false;
 }
 else if (!credit.HasGoodCredit(cust))
 {
 eligible = false;
 }

 return eligible;
 }
 }
}

https://taylorandfrancis.com

197DOI: 10.1201/9781003308461-10

Appraisal

A Design Pattern is a reusable solution to problems that frequently arise
in software development. The pattern usually depicts the interactions and
links between classes or items. The goal is to make the development pro-
cess faster by providing tried-and-true development/design paradigms.
Design Patterns are problem-solving methodologies that are independent
of programming languages. Thus, a Design Pattern represents an idea
rather than a specific implementation. We may make your code more flex-
ible, reusable, and easily-maintained by employing Design Patterns.

Design Patterns aren’t always required in projects. Design Patterns aren’t
supposed to be used in the creation of projects. The purpose of Design
Patterns is to solve common problems. We must adopt an appropriate design
whenever there is a requirement to avoid future complications. We only
need to comprehend Design Patterns and their goals to figure out which
pattern to use. We will only be able to choose the best one if we do this.

Goal: Identify the purpose and application of each Design Pattern so
that we may select and apply the appropriate pattern as needed.

For example, in many real-world scenarios, we only want to make one
instance of a class. For example, a country can only have one active presi-
dent at any time. A Singleton pattern is what this pattern is called. Other
software examples include a single database connection shared by several
objects, as establishing a separate database connection for each item is
expensive. Similarly, instead of developing many managers, an application
might have a single configuration manager or error manager that handles
all problems.

Once a design has been represented, it can be reused by designers other
than the original designer. Individual designers could always reuse their
designs or those they had learned about from others informally. On the
other hand, a well-understood design representation allows a designer to
communicate well-understood, well-tested designs to other practitioners

https://doi.org/10.1201/9781003308461-10

198 ◾ Appraisal

dealing with similar design problems and to students learning about
object-oriented design concepts.

More information than just design diagrams must include in a reus-
able design. For example, the problem that the design is intended to solve
must be specified. This information is important because it allows poten-
tial reusers to identify available designs that are candidates for reuse when
confronted with a specific problem.

Another type of information required in a reusable design is the trade-
offs implied by the design. Designers must typically strike a balance
between competing goals such as efficiency, flexibility, fault tolerance, and
simplicity (among others). A single problem can inspire several useful
designs, each with a different balance of design factors.

A Design Pattern is a suggested format for presenting reusable design
elements.

A Design Pattern names, motivates, and explains a general design that
addresses a recurring design problem in object-oriented systems in a sys-
tematic manner. It describes the problem, the solution, when to use it, and
the consequences. It also provides implementation guidance and exam-
ples. The solution is a general arrangement of problem-solving objects and
classes. The solution is tailored and implemented to address the issue in a
specific context.

The first sentence of the definition expresses the intent of a Design
Pattern: to present the solution to a recurring design problem consistently
and coherently. The definition’s next two sentences outline the content
of a Design Pattern. The last two sentences explain how to use a Design
Pattern. The usage makes it clear that a Design Pattern is not a program or
code, but rather a design that must be tailored to the specific requirements
of a specific problem and then implemented. The book “Design Patterns”
contains a collection of Design Patterns, one of which is detailed below.

A Design Pattern’s content consists of the twelve elements listed below:

1. name: Each pattern has its own distinct, short descriptive name. The
collection of pattern names results in developing a specialized vocab-
ulary that designers can use to describe and discuss design concepts.

2. intent: The intent is a brief description of the problem that the
Design Pattern addresses. The intent is useful for browsing Design
Patterns and recalling the purpose of a pattern when the name alone
is insufficient.

Appraisal ◾ 199

3. motivation: The motive describes a typical, specific situation illus-
trative of the vast class of problems the pattern addresses. The reason
should make it obvious that the situation is broad and serious. Class
diagrams and/or object diagrams and a written description are typi-
cally included in the motivation.

4. applicability: This element contains a set of requirements that must
be met for the pattern to be used. The criteria convey the designer’s
intentions (e.g., “clients should be able to overlook the distinction
between compositions of objects and individual items”), complicated
features of the problem (e.g., “an application employs a huge number
of objects”), and limits.

5. structure: Here is an explanation of the pattern using class and
object diagrams. The class and object names are generalizations of
those found in the motivation’s specific example. The Builder Pattern
rationale, for example, presents an example with a base class named
TextConverter and derived classes ASCIIConverter, TeXConverter,
and TextWidgetConverter. The base class Builder is identified in the
class diagrams in the structure section, and there is only one repre-
sentative derived class entitled ConcreteBuilder.

6. participants: Each class in the structure section is detailed briefly.
The description is a list of the roles and goals of each class in the design.

7. collaborations: The individuals’ essential relationships and inter-
actions are discussed. A complicated interaction sequence can be
depicted using object interaction diagrams.

8. consequences: This section discusses the benefits and drawbacks of
employing the Design Pattern. Positive consequences might include
enhanced flexibility, decreased memory consumption, simpler
expansion, support for a specific feature, or simplified use. Negative
consequences might include inefficient behavior in certain circum-
stances, complicated class structure for specific issues, loss of system
behavior assurances, and excessively generic design with accompa-
nying loss of performance or storage costs. It is critical that designers
present and readers comprehend both the good and negative aspects
of their designs. Every design achieves a balance between numerous
conflicting forces, and no design can escape having some undesir-
able implications.

200 ◾ Appraisal

9. implementation: A typical implementation is shown for the classes
listed in the structure section. Because the structural part is univer-
sal, the implementation offered in this section is as well. This section
is intended to provide a high-level overview of how to represent the
pattern in a certain programming language.

10. code example: The primary code for a typical problem (typically the
one stated in the rationale) is provided. This code demonstrates how
the pattern might apply to the specific situation in detail.

11. known uses: This is a list of systems, libraries, tools, or frameworks
that have addressed this Design Pattern’s design issue. The sample sys-
tems may have employed a variant of the Design Pattern as a solution.

12. similar patterns: Other Design Patterns that are regarded to work
well with this pattern are included. This collection gives designers
extra assistance by pointing them to possibly relevant patterns.

DESIGN PATTERNS TYPES
Design Patterns are divided into three categories.

Creational

Class instantiation or object generation is the focus of these Design
Patterns. Class-creational patterns and object-creational patterns are two
subsets of these patterns. While class-creation patterns make good use
of inheritance in the instantiation process, object-creation patterns use
delegation.

Factory Pattern, Abstract Factory, Builder, Singleton, Object Pool, and
Prototype are all Creational Design Patterns.

Use Case of the Creational Design Pattern

1. Assume a developer wants to construct an introductory
DBConnection class to connect to a database and access the database
from code in numerous places. Typically, the developer will create an
instance of the DBConnection class and use it to perform database
operations wherever needed. As each instance of the DBConnection
class has a different connection to the database, numerous con-
nections to the database are created. To cope with it, we make the
DBConnection class a singleton class, which means that only one

Appraisal ◾ 201

instance of DBConnection is generated, and only one connection is
made. We can regulate load balance, superfluous connections, and
so on since we can manage DB Connection from a single instance.

2. We may use the Factory design if we wish to produce several
instances of the same type while maintaining loose coupling. A class
that implements the Factory Design Pattern acts as a link between
numerous classes. Consider using several database servers, such as
SQL Server and Oracle. Suppose we are developing an application
with the SQL Server database as the back end, but need to change the
database to Oracle in the future. In that case, we will need to modify
all our code. Hence, as Factory Design Patterns maintain loose cou-
pling and easy implementation, we should use the Factory Design
Pattern to achieve loose coupling and create a similar type of object.

Structural

Structural Design Patterns involve arranging several classes and objects
into bigger structures that give additional functionality.

Adapter, Bridge, Composite, Decorator, Facade, Flyweight, Private
Class Data, and Proxy are Structural Design Patterns.

Use Case of Structural Design Pattern
An adapter Design Pattern is used when two interfaces are incompat-
ible with one other and wish to build a relationship between them via
an adapter. The adapter pattern translates a class’s interface into another
interface or class that the client expects, allowing classes that might oth-
erwise be incompatible with operating together. So, in these incompatible
cases, we may use the adapter approach.

Behavioral

Identifying and discovering shared communication patterns across items
is all about behavioral patterns.

Chain of duty, Command, Interpreter, Iterator, Mediator, Memento,
Null Object, Observer, State, Strategy, Template Method, and Visitor are
examples of behavioral patterns.

Behavioral Design Pattern Application
The template pattern specifies the skeleton of an algorithm in an opera-
tion where some stages are delegated to subclasses. Subclasses can use

202 ◾ Appraisal

the template approach to rewrite certain phases of an algorithm without
affecting the algorithm’s structure. For example, in our project, we could
want the module’s behavior to be extendable. We can make the module
act in new and different ways if the application’s requirements change or
to satisfy the demands of new applications. However, no one is permitted
to modify the source code, i.e., we can add but not change the structure in
such instances when a developer can approach a template Design Pattern.

BENEFITS OF DESIGN PATTERNS REUSABILITY

• Reusability: By leveraging inheritance, we can make the code reus-
able and hence utilize it in various projects.

• Transparent: It enhances the code’s transparency for all future
developers who will utilize it.

• Established Solution: We can trust the solution supplied by Design
Patterns since it has been well-proven and tested at important phases.

• Established Communication: Design Patterns facilitate communi-
cation among designers. When discussing system design, software
experts may quickly visualize the high-level design in their brains
when they refer to the name of the pattern employed to solve a cer-
tain issue.

• Efficient Development: Design Patterns aid in the creation of highly
coherent modules with little coupling.

A MUST-HAVE SKILL FOR SOFTWARE DEVELOPERS
Let’s start with a real-life example: imagine we are a restaurant owner.
Running a restaurant entails more than just cooking food and providing it
to clients. We must also take care of great food, clean dishes, and frequent
issues that waiters, chefs, and other personnel face in our restaurant. As
restaurant owner, we must also provide answers to those basic issues.

In software development, the same phenomenon occurs. Suppose we
believe that constructing software is all about utilizing a programming
language and applying logic, whether we are a newbie or an experienced
programmer. In that case, we will run into many issues at the produc-
tion level. Design Patterns are programming templates that provide our
code with optimal flow, connectivity, and structure. It is a communication
tool or a generic solution provided by experienced software developers to

Appraisal ◾ 203

tackle typically recurring difficulties that developers confront during the
software development phase.

As software engineer, our goal should not only be to write a lot of code, but
also to decrease complexity and ensure code reusability. We will be expected
to produce clean, beautiful, bug-free, and manageable code that other devel-
opers can understand and that can later be changed with minimum impact
on the entire project, which is where Design Patterns come into play.

Importance in Software Development

Learning Design Patterns saves developers a lot of time. The following
points describe its significance:

• It makes code reusable, bug-free, and aesthetically pleasing.

• Accelerate the development process.

• Changes or modifications become less difficult.

• Reduce the most typical issues that developers confront during the
development process.

• Enhance our object-oriented skills.

• The flow of code is simple to grasp.

• Because there is less code, it is easier to maintain.

REAL-LIFE EXAMPLES HELP US UNDERSTAND
THE IMPORTANCE
In software design, a Software Design Pattern is a broad, repeatable solu-
tion to an often recurring problem within a particular environment. This
is Wikipedia’s definition of Software Design Patterns… The preceding
definition makes sense if we are experienced developer who has spent time
developing code for software, but it goes right over our head and sounds
uninteresting if we are a newbie who is completely unaware of it. Let us
first consult with expert developers.

In software design, a Software Design Pattern is a broad, repeatable
solution to an often recurring problem within a certain environment. The
definition makes sense if we are experienced developer who has spent time
developing code for software, but it goes right over our head and sounds
uninteresting if we are a newbie who is completely unaware of it.

204 ◾ Appraisal

Real-Life Illustration

Do we enjoy eating? Which of these restaurants is our favorite? Where
do we go the most? Do we prefer street food or online apps like Zomato
and Swiggy? We may have experimented with different cuisines as well as
different locations. If we have a favorite restaurant on our list where we
frequently eat our favorite food, what is the reason for that? Of course, the
expert chef at that restaurant may be preparing the meal using a special-
ized approach. What if we wish to make the same cuisine and do the same
test at home?

What should we do now? We must employ the same strategy or
method as the skilled chef. They may have tried several recipes and altered
their technique to prepare that meal. Finally, they came to a halt when
they acquired a precise technique for preparing that food, which tasted
wonderful.

Suppose we want to produce the same food that tastes delicious as it
does in our favorite restaurant. We must adopt the same approach and
procedures as the expert chefs or contact a friend who cooks well and pre-
pares dishes using a certain methodology.

Enough about food; let’s get to the Design Patterns. Take heed of
the terms underlined above: they tested several recipes, modified their
approach, and are an experienced chef and cook. The same is true for
Design Patterns. Design Patterns are similar to some of the best practices
used by chefs (Gang of Four (GoF)) to prepare a meal in order for it to taste
the best.

• Design Patterns are some of the design methods that experienced
object-oriented software engineers employ (experienced chef or
friends in our context). They are broad answers to issues encountered
during software development.

• They are the results of many software engineers’ trial and error (test-
ing several recipes) over a long period of time.

LET’S GET INTO THE TECHNICAL DETAILS
CONCERNING DESIGN PATTERNS
The GoF faced challenges that they overcame. They discovered that some
of these solutions may be classified and that some issues are always quite
prominent and common (as common as poverty). So, theoretically, Design
Patterns are merely templates that provide our code with correct flow,

Appraisal ◾ 205

coupling, and structure. It is a communication tool or a generic solution
provided by experienced software developers to tackle typically recur-
ring difficulties that developers confront during the software development
phase.

Computing scholars and practitioners created a wide range of organiza-
tional concepts and approaches for creating high-quality object-oriented
software that is brief, accurate, and reusable, describing a solution to a
“typical” software design challenge. A pattern is a generic template for a
solution that may use in a variety of scenarios. These templates may use
millions of times to tackle particular sorts of issues.

THE GOAL OF DESIGN PATTERNS
We own and operate a restaurant. Running a restaurant entails more than
just cooking food and providing it to clients. We must also take care of
great cuisine, clean dishes, and frequent issues that waiters, chefs, and
other personnel face in our restaurant. As restaurant owner, we must also
provide answers to those basic issues.

As software engineer, our goal should not only be to write a lot of code,
but also to decrease complexity and ensure code reusability.

We will be expected to produce clean, beautiful, bug-free, and man-
ageable code that other developers can understand and that can later be
changed with minimum impact on the entire project, which is where
Design Patterns come into play.

• We are constructing a house without a plan. We have a basic notion
of what we want or need for the house, so we begin construction
on the first wall, then the second, and so on. The sooner we realize
that this is not going to work, the better, and it might be even more
difficult if we are building the house with numerous individuals.
Without a plan, how would they know what to do? The same is true
for software.

We may construct an application in software development with-
out first designing it. Especially if an existing design can reuse. (e.g.,
adding a new page to a website does not need redesigning every-
thing.) We may just copy and paste the construction pattern from
other sites. We can look for an existing solution for a similar type of
problem to ours and utilize the approach or code from there to solve
our own.

206 ◾ Appraisal

• Assume we are a student or a CAT candidate. Some formulae or
approaches may be used to answer aptitude questions or mathemati-
cal problems. We use those formulae or strategies to tackle issues of
a similar nature. We are aware that we have only saved a few words
or concepts, and our efforts have been minimized. We also saved
ourselves time. Design Patterns are extremely important in software
development (mathematics formula or technique).

Assume we are developing some code in software development and dis-
cover that made a mistake. It needs adjustments in ten more files to be
corrected. This means that our design, assuming we created it, was not
excellent in the first place. What did this blunder cost us? We squandered
a lot of time, resources, and efforts, and it also hampered the productivity
of the other developer.

After a few days, we have ten additional courses, and we add alerts to
those classes as well. When our notification system changes, we modify
the code in all 10+13 classes. Our code no longer makes sense to us. We
recognize that all of these classes should be disconnected from the notifi-
cation system. We create a new class and place all of the notification logic
within it. Then we create abstractions that allow anything to inform our
system with the least amount of ripple impact and maximum reusability.

Did we note how we just created the observer or pattern for the entire
program? If we had known this pattern previously, we would not have
had to deal with all of those problems and would not have spent so much
time. As a software engineer, we must create software that makes sense.
The following points can now use to summarize the significance of Design
Patterns.

• It makes code reusable, bug-free, and aesthetically pleasing.

• Accelerate the development process.

• Changes or modifications become less difficult.

• Reduce the most typical issues that developers confront during the
development process.

• Enhance your object-oriented skills.

• The flow of code is simple to grasp.

• Because there is less code, it is easier to maintain.

Appraisal ◾ 207

WHY IS PYTHON A GOOD PATTERN LANGUAGE?
Patterns may be written in any programming language. Patterns should,
in reality, be examined in the context of any specific programming lan-
guage. Patterns, language grammar, and nature all place constraints on
our programming. The limits imposed by language syntax and nature
(dynamic, functional, object-oriented, and so on) might change, as can the
reasons for their existence. Pattern constraints exist for a reason, and they
serve a function. That is the fundamental objective of patterns: to instruct
us on how to do something and how not to do it. We’ll talk about patterns
eventually, namely Python Design Patterns.

Python’s philosophy is based on the concept of well-thought-out best
practices. Python is a dynamic language. As a result, it already implements
or makes it simple to implement, a number of prominent Design Patterns
with just a few lines of code. Some Design Patterns are baked into Python,
so we utilize them without even realizing them. Because of the nature of
the language, further patterns are not required.

For instance, Factory is a structural Python Design Pattern for pro-
ducing new objects while obscuring the instantiation mechanism from
the user. However, because object creation in Python is designed to be
dynamic, modifications such as Factory are not required. Of course, we
are free to apply it if we like. There may be instances where it would be
extremely beneficial, but they are the exception rather than the norm.

PATTERNS ARE FOR REUSE
Each pattern allows us to change a certain part of the system.

Redesign causes and patterns that address them:

• Specify an object’s class clearly (Abstract Factory, Factory Pattern,
Prototype).

• Requests that are hard-coded (Command, Chain of Responsibility).

• Platform hardware and software dependencies (Abstract Factory,
Bridge).

• Object representations and implementations are required (Abstract
Factory, Memento, Bridge, and Proxy).

• Dependencies in algorithms (Strategy, Builder, Iterator, Template
Method, Visitor).

208 ◾ Appraisal

• Coupled tightly (Facade, Mediator, Observer, Command, Abstract
Factory, and Bridge).

• Subclassing is used to increase functionality (Bridge, Composite,
Decorator, Chain of Responsibility, Composite, and Strategy).

• Inability to easily switch classes (Visitor, Decorator, and Adapter).

LIST OF THE ORIGINAL 23 PATTERNS

Purpose Design Pattern Aspect(s) That Can Vary

Creational Abstract Factory families of product objects
Builder how a composite object gets created
Factory subclass of the object that is instantiated
Prototype class of object that is instantiated
Singleton the sole instance of a class

Structural Adapter interface to an object
Bridge implementation of an object
Composite structure and composition of an object
Decorator responsibilities of an object without subclassing
façade interface to a subsystem
Flyweight storage costs of objects
Proxy how an object is accessed; its location

Behavioral Chain of Responsibility an object that can fulfill request
Command when and how a request is fulfilled
Interpreter grammar and interpretation of language
Iterator how aggregate’s elements are accessed, traversed
Mediator how and which objects interact with each other
Memento what private information is stored outside an

object, and when
Observer number of objects that depend on another object;

how the dependent objects stay up to date
State states of an object
Strategy an algorithm
Template Method steps of an algorithm
Visitor operations that can apply to an object(s) without

changing their class(es)

BUILDER PATTERN
The Builder Pattern is a Creation Design Pattern that tries to “separate the
building of a complicated thing from its representation in order for the
same production process to produce diverse representations.” It enables

Appraisal ◾ 209

you to build complicated items step by step. Using the same building
code, we can simply generate alternative kinds and representations of the
object.

It is primarily intended to increase the flexibility of solutions to differ-
ent object creation difficulties in object-oriented programming.

The Problem if the Builder Pattern Is Not Used

Imagine we want to join one of the exclusive batches of PeeksforPeeks
without utilizing the Builder Pattern. So we will go there and inquire
about the fee structure, available hours, and batches for the course we wish
to enroll in. After inspecting the system, they will inform us about the
courses, their fee structures, available timings, and batches.

Our fundamental goal is to create a system that is adaptable, trust-
worthy, structured, and lubricious. Unexperienced developers will con-
struct a different and unique lesson for each and every course offered
by PeeksforPeeks. Then, for each class, they will construct a separate
object instantiation, which is not always necessary. The primary issue
will occur when PeeksforPeeks launches new courses and developers
are forced to implement additional classes since their code is not very
flexible.

concrete-course
class DSA():

 """Class for the Data Structures and Algorithms"""

 def Fee(self):
 self.fee = 9200

 def available_batches(self):
 self.batches = 6

 def __str__(self):
 return "DSA"

concrete-course
class SDE():

 """Class for the Software development Engineer"""

 def Fee(self):
 self.fee = 20000

210 ◾ Appraisal

Solution Using Builder Pattern

Our final result should be any PeeksforPeeks course. It might be SDE, STL,
or DSA. Before selecting a certain course, we must first gather informa-
tion about the courses, curriculum, cost structure, schedules, and batches.
Using the same procedure, we may pick other courses from PeeksforPeeks.
That is the advantage of employing the Builder Pattern.

 def available_batches(self):
 self.batches = 3

 def __str__(self):
 return "SDE"

concrete-course
class STL():

 """class for the Standard Template Library of C++"""

 def Fee(self):
 self.fee = 8000

 def available_batches(self):
 self.batches = 5

 def __str__(self):
 return "STL"

main-method
if __name__ == "__main__":

 sde = SDE() # object for the SDE
 dsa = DSA() # object for the DSA
 stl = STL() # object for the STL

 print(f'Name of the Course: {sde} and its Fee: {sde.fee}')
 print(f'Name of the Course: {stl} and its Fee: {stl.fee}')
 print(f'Name of the Course: {dsa} and its Fee: {dsa.fee}')

Abstract-course
class Course:

 def __init__(self):
 self.Fee()
 self.available_batches()

Appraisal ◾ 211

 def Fee(self):
 raise NotImplementedError

 def available_batches(self):
 raise NotImplementedError

 def __repr__(self):
 return 'Fee : {0.fee} | Batches Available :
{0.batches}'.format(self)

concrete-course
class DSA(Course):

 """Class for the Data Structures and Algorithms"""

 def Fee(self):
 self.fee = 9200

 def available_batches(self):
 self.batches = 6

 def __str__(self):
 return "DSA"

concrete course
class SDE(Course):

 """Class for the Software Development Engineer"""

 def Fee(self):
 self.fee = 20000

 def available_batches(self):
 self.batches = 3

 def __str__(self):
 return "SDE"

concrete course
class STL(Course):

 """Class for Standard Template Library"""

 def Fee(self):
 self.fee = 5000

 def available_batches(self):
 self.batches = 7

 def __str__(self):
 return "STL"

212 ◾ Appraisal

Benefits of Using the Builder Pattern

• Reusability: When creating the different product representations,
we may reuse the same building code for additional representations.

• Single Responsibility Principle: The Single Responsibility Principle
states that we may isolate the business logic from the complicated
building code.

• Object Construction: Here, we build our object step by step, delay
construction phases, or repeat steps recursively.

Complex Course
class ComplexCourse:

 def __repr__(self):
 return 'Fee : {0.fee} | available_batches:
{0.batches}'.format(self)

Complex-course
class Complexcourse(ComplexCourse):

 def Fee(self):
 self.fee = 8000

 def available_batches(self):
 self.batches = 5

construct-course
def construct_course(cls):

 course = cls()
 course.Fee()
 course.available_batches()

 return course # return course object

main-method
if __name__ == "__main__":

 dsa = DSA() # object for the DSA course
 sde = SDE() # object for the SDE course
 stl = STL() # object for the STL course

 complex_course = construct_course(Complexcourse)
 print(complex_course)

Appraisal ◾ 213

The following are the disadvantages of utilizing the Builder Pattern:
Because the Builder Pattern necessitates the creation of numerous new

classes, the complexity of our code increases.

• Mutability: The builder class must be changeable.

• Initialization: The class’s data members are not guaranteed to be
initialized.

Applicability

• Building Complex Objects: The Builder Pattern enables you to build
the items step by step. We can even postpone the execution of some
processes without affecting the final outcome. It is convenient to call
the stages recursively while creating an object tree. Because it does
not enable the exposing of an unfinished object, it stops the client
code from getting the partial data.

• Differentiate by Representations: The Builder Pattern is used when
the building of numerous product representations comprises identi-
cal stages that change only in the specifics. The base builder interface
is used to describe all building steps, which are then carried out by
concrete builders.

In Java, an Example of the Builder Design Pattern

To create a simple example of the Builder Design Pattern, follow the six
steps below:

• Make two abstract classes. The CD and Company

• Create two company implementation classes: Apple and Samsung.

• Make a CDType class.

• Make a CDBuilder class.

• Make a BuilderDemo class.

214 ◾ Appraisal

1. Make a Packing interface
File: Packing.java

2. Design two abstract classes: CD and Company: Create an abstract
class CD that implements the Packing interface.

File: CD.java

File: Company.java

3. Create two company implementation classes: Apple and Samsung
File: Apple.java

public interface Packing {
 public String pack();
 public int prices();
}

public class Apple extends Company{
 @Override
 public int prices(){
 return 23;
 }
 @Override
 public String pack(){
 return "Apple CD";
 }
}//End of Apple class.

public abstract class Company extends CD{
 public abstract int prices();
 }

public abstract class CD implements Packing{
 public abstract String pack();
 }

Appraisal ◾ 215

File: Samsung.java

4. Design the CDType class
File: CDType.java

5. Make a CDBuilder class
File: CDBuilder.java

public class Apple extends Company {
 @Override
 public int prices(){
 return 18;
 }
 @Override
 public String pack(){
 return "Samsung CD";
 }
}//End of Samsung class.

import java.util.ArrayList;
import java.util.List;
public class CDType {
 private List<Packing> items=new
ArrayList<Packing>();
 public void addItem(Packing packs) {
 items.add(packs);
 }
 public void getCost(){
 for (Packing packs : items) {
 packs.prices();
 }
 }
 public void showItems(){
 for (Packing packing : items){
 System.out.print("CD-name : "+packing.
pack());
 System.out.println(", Prices : "+packing.
prices());
 }
 }
}//End of CDType class.

public class CDBuilder {
 public CDType buildAppleCD(){

216 ◾ Appraisal

6. Make a BuilderDemo class
File: BuilderDemo.java

A REAL-WORLD APPLICATION OF THE BUILDER PATTERN
Let’s look at a real-world example of the Builder Design Pattern step by
step.

• Step 1: Create an interface Item representing the Pizza and
Cold-drink.

File: Item.java

public class BuilderDemo{
 public static void main(String args[]){
 CDBuilder cdBuilder=new CDBuilder();
 CDType cdType1=cdBuilder.buildAppleCD();
 cdType1.showItems();

 CDType cdType2=cdBuilder.buildSamsungCD();
 cdType2.showItems();
 }
 }

public interface Item
{
 public String name();
 public String size();
 public float prices();
}// End of interface Item.

 CDType cds=new CDType();
 cds.addItem(new Apple());
 return cds;
}
public CDType buildSamsungCD(){
CDType cds=new CDType();
cds.addItem(new Samsung());
return cds;
}
}// End of CDBuilder class.

Appraisal ◾ 217

• Step 2: Create an abstract class Pizza that implements the Item interface.
File: Pizza.java

• Step 3: Create an abstract ColdDrink class that implements the Item
interface.

File: ColdDrink.java

• Step 4: Develop an abstract class VegPizza that extends the abstract
class Pizza.

File: VegPizza.java

• Step 5: Develop an abstract class NonVegPizza that extends the
abstract class Pizza.

File: NonVegPizza.java

public abstract class NonVegPizza extends Pizza{
 @Override
 public abstract float prices();
 @Override

public abstract class VegPizza extends Pizza{
 @Override
 public abstract float prices();
 @Override
 public abstract String name();
 @Override
 public abstract String size();
}// End of abstract class VegPizza

public abstract class ColdDrink implements Item{
 @Override
 public abstract float prices();

public abstract class Pizza implements Item{
 @Override
 public abstract float prices();
}

218 ◾ Appraisal

• Step 6: Now, extend the abstract class VegPizza with concrete sub-
classes SmallCheezePizza, MediumCheezePizza, LargeCheezePizza,
and ExtraLargeCheezePizza.

File: SmallCheezePizza.java

File: MediumCheezePizza.java

public class MediumCheezePizza extends VegPizza{
 @Override
 public float prices() {
 return 220.f;
 }
 @Override
 public String name() {
 return "Cheeze Pizza";
 }
 @Override
 public String size() {
 return "Medium Size";
 }
}// End of MediumCheezePizza class.
</textaera></div>

public class SmallCheezePizza extends VegPizza{
 @Override
 public float prices() {
 return 180.0f;
 }
 @Override
 public String name() {
 return "Cheeze Pizza";
 }
 @Override
 public String size() {
 return "Small size";
 }
}// End of SmallCheezePizza class.

 public abstract String name();
 @Override
 public abstract String size();
}// End of abstract class NonVegPizza.

Appraisal ◾ 219

File: ExtraLargeCheezePizza.java

• Step 7: Now, extend the abstract class VegPizza with concrete sub-
classes SmallOnionPizza, MediumOnionPizza, LargeOnionPizza,
and ExtraLargeOnionPizza.

File: SmallOnionPizza.java

public class SmallOnionPizza extends VegPizza {
 @Override

public class ExtraLargeCheezePizza extends VegPizza{
 @Override
 public float prices() {
 return 320.f;
 }
 @Override
 public String name() {
 return "Cheeze Pizza";
 }
 @Override
 public String size() {
 return "Extra-Large Size";
 }
}// End of ExtraLargeCheezePizza class.

<div id="filename">File: LargeCheezePizza.java</div>
<div class="codeblock"><textarea name="code"
class="java">
public class LargeCheezePizza extends VegPizza{
 @Override
 public float prices() {
 return 290.0f;
 }
 @Override
 public String name() {
 return "Cheeze Pizza";
 }
 @Override
 public String size() {
 return "Large Size";
 }
}// End of LargeCheezePizza class.

220 ◾ Appraisal

File: MediumOnionPizza.java

File: LargeOnionPizza.java

 public float prices() {
 return 140.0f;
 }
 @Override
 public String name() {
 return "Onion Pizza";
 }
 @Override
 public String size() {
 return "Small Size";
 }
}// End of SmallOnionPizza class.

public class LargeOnionPizza extends VegPizza{
 @Override
 public float prices() {
 return 190.0f;
 }
 @Override
 public String name() {
 return "Onion Pizza";
 }
 @Override

public class MediumOnionPizza extends VegPizza {
 @Override
 public float prices() {
 return 180.0f;
 }
 @Override
 public String name() {
 return "Onion Pizza";
 }
 @Override
 public String size() {
 return "Medium Size";
 }
}// End of MediumOnionPizza class.

Appraisal ◾ 221

File: ExtraLargeOnionPizza.java

• Step 8: Now, extend the abstract class VegPizza with concrete sub-
classes SmallMasalaPizza, MediumMasalaPizza, LargeMasalaPizza,
and ExtraLargeMasalaPizza.

File: SmallMasalaPizza.java

public class SmallMasalaPizza extends VegPizza{
 @Override
 public float prices() {
 return 120.0f;
 }
 @Override
 public String name() {
 return "Masala Pizza";
 }
 @Override
 public String size() {
 return "Samll Size";
 }
}// End of SmallMasalaPizza class

public class ExtraLargeOnionPizza extends VegPizza {
 @Override
 public float prices() {
 return 220.0f;
 }
 @Override
 public String name() {
 return "Onion Pizza";
 }
 @Override
 public String size() {
 return "Extra-Large Size";
 }
}// End of ExtraLargeOnionPizza class

 public String size() {
 return "Large size";
 }
}// End of LargeOnionPizza class.

222 ◾ Appraisal

File: MediumMasalaPizza.java

File: LargeMasalaPizza.java

public class LargeMasalaPizza extends VegPizza{
 @Override
 public float prices() {
 return 170.0f;
 }

 @Override
 public String name() {

 return "Masala Pizza";

 }

 @Override
 public String size() {
 return "Large Size";
 }
} //End of LargeMasalaPizza class

public class MediumMasalaPizza extends VegPizza {

 @Override
 public float prices() {
 return 130.0f;
 }

 @Override
 public String name() {

 return "Masala Pizza";

 }

 @Override
 public String size() {
 return "Medium Size";
 }

Appraisal ◾ 223

File: ExtraLargeMasalaPizza.java

• Step 9: Now, extend the abstract class NonVegPizza with con-
crete subclasses SmallNonVegPizza, MediumNonVegPizza,
LargeNonVegPizza, and ExtraLargeNonVegPizza.

File: SmallNonVegPizza.java

public class ExtraLargeMasalaPizza extends VegPizza {
 @Override
 public float prices() {
 return 190.0f;
 }

 @Override
 public String name() {

 return "Masala Pizza";

 }

 @Override
 public String size() {
 return "Extra-Large Size";
 }
}// End of ExtraLargeMasalaPizza class

public class SmallNonVegPizza extends NonVegPizza {

 @Override
 public float prices() {
 return 190.0f;
 }

 @Override
 public String name() {
 return "Non-Veg Pizza";
 }

 @Override
 public String size() {
 return "Samll Size";
 }

}// End of SmallNonVegPizza class

224 ◾ Appraisal

File: MediumNonVegPizza.java

File: LargeNonVegPizza.java

File: ExtraLargeNonVegPizza.java

public class ExtraLargeNonVegPizza extends NonVegPizza {
 @Override

public class MediumNonVegPizza extends NonVegPizza{

 @Override
 public float prices() {
 return 220.0f;
 }

 @Override
 public String name() {
 return "Non-Veg Pizza";
 }

 @Override
 public String size() {
 return "Medium Size";
 }

public class LargeNonVegPizza extends NonVegPizza{

 @Override
 public float price() {
 return 230.0f;
 }

 @Override
 public String name() {
 return "Non-Veg Pizza";
 }

 @Override
 public String size() {
 return "Large Size";
 }

}// End of LargeNonVegPizza class

Appraisal ◾ 225

• Step 10: Create two abstract classes, Pepsi and Coke, which will
extend the abstract class ColdDrink.

File: Pepsi.java

File: Coke.java

public abstract class Coke extends ColdDrink {

 @Override
 public abstract String name();

public abstract class Pepsi extends ColdDrink {

 @Override
 public abstract String name();

 @Override
 public abstract String size();

 @Override
 public abstract float prices();

}// End of Pepsi class

 public float prices() {
 return 260.0f;
 }

 @Override
 public String name() {
 return "Non-Veg Pizza";
 }

 @Override
 public String size() {
 return "Extra-Large Size";
 }

}

 // End of ExtraLargeNonVegPizza class

226 ◾ Appraisal

File: MediumPepsi.java

 @Override
 public abstract String size();

 @Override
 public abstract float price();

}// End of Coke class

</textaea></div>

<p>Step 11:Create concrete sub-classes SmallPepsi,
MediumPepsi, LargePepsi that will extend to abstract
class Pepsi.</p>
<div id="filename">File: SmallPepsi.java</div>
<div class="codeblock"><textarea name="code"
class="java">
public class SmallPepsi extends Pepsi{

 @Override
 public String name() {
 return "320 ml Pepsi";
 }

 @Override
 public float prices() {
 return 27.0f;
 }

 @Override
 public String size() {
 return "Small Size";
 }
}// End of SmallPepsi class

public class MediumPepsi extends Pepsi {

 @Override
 public String name() {
 return "400 ml Pepsi";
 }

Appraisal ◾ 227

File: LargePepsi.java

• Step 12: Now, extend the abstract class Coke with concrete subclasses
SmallCoke, MediumCoke, and LargeCoke.

File: SmallCoke.java

public class SmallCoke extends Coke{

 @Override
 public String name() {
 return "320 ml Coke";
 }

 @Override
 public String size() {

public class LargePepsi extends Pepsi{
 @Override
 public String name() {
 return "780 ml Pepsi";
 }

 @Override
 public String size() {
 return "Large Size";
 }

 @Override
 public float prices() {
 return 52.0f;
 }
}// End of LargePepsi class

 @Override
 public String size() {
 return "Medium Size";
 }

 @Override
 public float prices() {
 return 38.0f;
 }
}// End of MediumPepsi class

228 ◾ Appraisal

File: MediumCoke.java

File: LargeCoke.java

 return "Small Size";
 }

 @Override
 public float prices() {

 return 27.0f;
 }
 }// End of SmallCoke class

public class LargeCoke extends Coke {
 @Override
 public String name() {
 return "780 ml Coke";
 }

 @Override
 public String size() {

public class MediumCoke extends Coke{

 @Override
 public String name() {
 return "400 ml Coke";
 }

 @Override
 public String size() {

 return "Medium Size";
 }

 @Override
 public float prices() {

 return 38.0f;
 }
}// End of MediumCoke class

Appraisal ◾ 229

 return "Large Size";
 }

 @Override
 public float prices() {

 return 55.0f;
 }
}// End of LargeCoke class

</textrea></div>

<p>Step 13:Create OrderedItems class that are
having Item objects defined above.</p>
<div id="filename">File: OrderedItems.java</div>
<div class="codeblock"><textarea name="code"
class="java">
import java.util.ArrayList;
import java.util.List;
public class OrderedItems {

 List<Item> items=new ArrayList<Item>();

 public void addItems(Item item){

 items.add(item);
 }
 public float getCost(){

 float cost=0.0f;
 for (Item item : items) {
 cost+=item.prices();
 }
 return cost;
 }
 public void showItems(){

 for (Item item : items) {
 System.out.println("Item is:" +item.name());
 System.out.println("Size is:" +item.size());
 System.out.println("Prices is: " +item.
prices());

 }
 }

}// End of OrderedItems class

230 ◾ Appraisal

• Step 14: Create an OrderBuilder class that will be responsible for
creating OrderedItems class objects.

File: OrdereBuilder.java

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
public class OrderBuilder {
 public OrderedItems preparePizza() throws
IOException{

 OrderedItems itemsOrder=new OrderedItems();
 BufferedReader br =new BufferedReader(new
InputStreamReader(System.in));

 System.out.println(" Enter choice of Pizza ");
 System.out.println("====================");
 System.out.println("1. Veg-Pizza");
 System.out.println("2. Non-Veg Pizza");
 System.out.println("3. Exit");
 System.out.println("====================");

 int pizzaandcolddrinkchoice=Integer.parseInt
(br.readLine());
 switch(pizzaandcolddrinkchoice)
 {
 case 1:{

 System.out.println("We ordered Veg
Pizza");
 System.out.println("\n\n");
 System.out.println("Enter types of
Veg-Pizza");
 System.out.println("---------------");
 System.out.println("1.Cheeze Pizza");
 System.out.println("2.Onion Pizza");
 System.out.println("3.Masala Pizza");
 System.out.println("4.Exit");
 System.out.println("---------------");
 int vegpizzachoice=Integer
.parseInt(br.readLine());
 switch(vegpizzachoice)
 {

Appraisal ◾ 231

 case 1:
 {
 System.out.println("We ordered
Cheeze Pizza");
 System.out.println("Enter
cheeze pizza size");
 System.out.println("-------");
 System.out.println("1.Small
Cheeze Pizza");
 System.out.println("2.Medium
Cheeze Pizza");
 System.out.println("3.Large
Cheeze Pizza");
 System.out.println("4.Extra-
Large Cheeze Pizza");
 System.out.println("-------");
 int heezepizzasize=Integer.
parseInt(br.readLine());
 switch(cheezepizzasize)
 {
 case 1:
 itemsOrder.addItems(new
SmallCheezePizza());
 break;
 case 2:
 itemsOrder.addItems(new
MediumCheezePizza());
 break;
 case 3:
 itemsOrder.addItems(new
LargeCheezePizza());
 break;
 case 4:
 itemsOrder.addItems(new
ExtraLargeCheezePizza());
 break;
 case 2:
 {
 System.out.println("We
ordered Onion Pizza");
 System.out.println
("Enter Onion pizza size");
 System.out.println
("----------------------");
 System.out.println
("1. Small Onion Pizza");

232 ◾ Appraisal

 System.out.println
("2. Medium Onion Pizza");
 System.out.println
("3. Large Onion Pizza");
 System.out.println
("4. Extra-Large Onion Pizza");
 System.out.println
("----------------------");
 int onionpizzasize
=Integer.parseInt(br.readLine());
 switch(onionpizzasize)
 {
 case 1:
 itemsOrder
.addItems(new SmallOnionPizza());
 break;

 case 2:
 itemsOrder.
addItems(new MediumOnionPizza());
 break;

 case 3:
 itemsOrder.
addItems(new LargeOnionPizza());
 break;

 case 4:
 itemsOrder
.addItems(new ExtraLargeOnionPizza());
 break;

 }
 }
 break;
 case 3:
 {
 System.out.println
("We ordered Masala Pizza");
 System.out.println
("Enter Masala pizza size");
 System.out.println
("---------------------");
 System.out.println
("1. Small Masala Pizza");

Appraisal ◾ 233

 System.out.println
("2. Medium Masala Pizza");
 System.out.println
("3. Large Masala Pizza");
 System.out.println
("4. Extra-Large Masala Pizza");
 System.out.println
(----------------------");
 int masalapizzasize=
Integer.parseInt(br.readLine());
 switch(masalapizzasize)
 {
 case 1:
 itemsOrder.addItems
(new SmallMasalaPizza());
 break;

 case 2:
 itemsOrder.addItems
(new MediumMasalaPizza());
 break;

 case 3:
 itemsOrder.addItems
(new LargeMasalaPizza());
 break;

 case 4:
 itemsOrder.addItems
(new ExtraLargeMasalaPizza());
 break;

 }

 }
 break;

 }

 }
 break;// Veg-pizza choice complete

 case 2:
 {
 System.out.println("We ordered
Non-Veg Pizza");

234 ◾ Appraisal

 System.out.println("\n\n");

 System.out.println("Enter Non-Veg
pizza size");
 System.out.println
("------------------------");
 System.out.println("1. Small
Non-Veg Pizza");
 System.out.println("2. Medium
Non-Veg Pizza");
 System.out.println("3. Large
Non-Veg Pizza");
 System.out.println("4. Extra-Large
Non-Veg Pizza");
 System.out.println
("----------------------");

 int nonvegpizzasize=Integer
.parseInt(br.readLine());

 switch(nonvegpizzasize)
 {

 case 1:
 itemsOrder.addItems(new
SmallNonVegPizza());
 break;

 case 2:
 itemsOrder.addItems(new
MediumNonVegPizza());
 break;

 case 3:
 itemsOrder.addItems
(new LargeNonVegPizza());
 break;

 case 4:
 itemsOrder.addItems
(new ExtraLargeNonVegPizza());
 break;
 }

 }

Appraisal ◾ 235

 break;
 default:
 {
 break;

 }

 }//end of the main Switch

 //continued?
 System.out.println("Enter choice of ColdDrink");
 System.out.println("======================");
 System.out.println(" 1. Pepsi");
 System.out.println(" 2. Coke");
 System.out.println(" 3. Exit");
 System.out.println("=======================");
 int coldDrink=Integer.parseInt(br.readLine());
 switch (coldDrink)
 {
 case 1:
 {
 System.out.println("We ordered Pepsi");
 System.out.println("Enter PepsiSize");
 System.out.println("----------------");
 System.out.println("1. Small Pepsi");
 System.out.println("2. Medium Pepsi");
 System.out.println("3. Large Pepsi");
 System.out.println("-----------------");
 int pepsisize=Integer.parseInt(br.readLine());
 switch(pepsisize)
 {
 case 1:
 itemsOrder.addItems(new SmallPepsi());
 break;

 case 2:
 itemsOrder.addItems(new MediumPepsi());
 break;

 case 3:
 itemsOrder.addItems(new LargePepsi());
 break;

 }
 }
 break;

236 ◾ Appraisal

 case 2:
 {
 System.out.println("We ordered Coke");
 System.out.println("Enter Coke Size");
 System.out.println("---------------");
 System.out.println("1. Small Coke");
 System.out.println("2. Medium Coke");
 System.out.println("3. Large Coke");
 System.out.println("4. Extra-Large Coke");
 System.out.println("---------------");

 int cokesize=Integer.parseInt
(br.readLine());
 switch(cokesize)
 {
 case 1:
 itemsOrder.addItems
(new SmallCoke());
 break;

 case 2:
 itemsOrder.addItems(new
MediumCoke());
 break;

 case 3:
 itemsOrder.addItems
(new LargeCoke());
 break;

 }
 }
 break;
 default:
 {
 break;
 }

 }//End of Cold-Drink switch
 return itemsOrder;
 } //End of the preparePizza() method

Appraisal ◾ 237

• Step 15: Make a BuilderDemo class that will make use of the
OrderBuilder class.

File: Prototype.java

C# Builder Pattern
Participants
This pattern’s classes and objects are as follows:

1. Builder (VehicleBuilder):

• Defines an abstract interface for creating Product object parts.

2. ConcreteBuilder (MotorCycleBuilder, CarBuilder, ScooterBuilder):

• Builds and assembles product parts by utilizing the Builder
interface.

• Defines and maintains the representation it creates.

• Provides a means of retrieving the product.

3. Director (Shop):

• Uses the Builder interface to create an object.

import java.io.IOException;
public class BuilderDemo {

 public static void main(String[] args) throws
IOException {
 // here TODO code application logic

 OrderBuilder builder=new OrderBuilder();

 OrderedItems orderedItems=builder.
preparePizza();

 orderedItems.showItems();

 System.out.println("\n");
 System.out.println("Total Cost is : "+
orderedItems.getCost());

 }
}// End of BuilderDemo class

238 ◾ Appraisal

4. Vehicle (Product):

• Represents the complex object under construction.
ConcreteBuilder creates the internal representation of the prod-
uct and defines the assembly process.

• Includes classes that define the constituent parts, as well as inter-
faces for putting the parts together to form the final result.

C# Structural Code

This structural code demonstrates the Builder Pattern, which is used to
create complex objects step by step. The construction process can generate
various object representations and provides a high level of control over
object assembly.

using System;
using System.Collections.Generic;

namespace DoFactory.GangOfFour.Builder.Structural
{
 /// <summary> MainApp startup class for the Structural
 /// Builder Design Pattern </summary>

 public class MainApp
 {
 /// <summary> Entry point into the console
application. </summary>

 public static void Main()
 {
 // Create the director and builders

 Director director = new Director();

 Builder b1 = new ConcreteBuilder1();
 Builder b2 = new ConcreteBuilder2();

 // Construct the two products

 director.Construct(b1);
 Product p1 = b1.GetResult();
 p1.Show();

 director.Construct(b2);
 Product p2 = b2.GetResult();
 p2.Show();

Appraisal ◾ 239

 // Wait for the user

 Console.ReadKey();
 }
 }

 /// <summary> The 'Director' class </summary>

 class Director
 {
 // Builder uses complex series of the steps

 public void Construct(Builder builder)
 {
 builder.BuildPartX();
 builder.BuildPartY();
 }
 }

 /// <summary> The 'Builder' abstract class </summary>

 abstract class Builder
 {
 public abstract void BuildPartX();
 public abstract void BuildPartY();
 public abstract Product GetResult();
 }

 /// <summary> The 'ConcreteBuilder1' class </summary>

 class ConcreteBuilder1 : Builder
 {
 private Product _product = new Product();

 public override void BuildPartX()
 {
 _product.Add("PartX");
 }

 public override void BuildPartY()
 {
 _product.Add("PartY");
 }

 public override Product GetResult()
 {
 return _product;

240 ◾ Appraisal

 }
 }

 /// <summary> The 'ConcreteBuilder2' class </summary>

 class ConcreteBuilder2 : Builder
 {
 private Product _product = new Product();

 public override void BuildPartX()
 {
 _product.Add("PartA");
 }

 public override void BuildPartY()
 {
 _product.Add("PartB");
 }

 public override Product GetResult()
 {
 return _product;
 }
 }

 /// <summary> The 'Product' class </summary>

 class Product
 {
 private List<string> _parts = new List<string>();

 public void Add(string part)
 {
 _parts.Add(part);
 }

 public void Show()
 {
 Console.WriteLine("\nProduct Parts---");
 foreach (string part in _parts)
 Console.WriteLine(part);
 }
 }
}

Appraisal ◾ 241

Real-World C# Code

This real-world code demonstrates the Builder Pattern, in which various
vehicles are assembled step by step. VehicleBuilders are used in the Shop to
build a variety of Vehicles in a series of sequential steps.

using System;
using System.Collections.Generic;

namespace DoFactory.GangOfFour.Builder.RealWorld
{
 /// <summary> MainApp startup class for the Real-World
Builder Design Pattern. </summary>

 public class MainApp
 {
 /// <summary> Entry point into console application.
</summary>

 public static void Main()
 {
 VehicleBuilder builder;

 // Create shop with the vehicle builders

 Shop shop = new Shop();

 // Construct and display the vehicles

 builder = new ScooterBuilder();
 shop.Construct(builder);
 builder.Vehicle.Show();

 builder = new CarBuilder();
 shop.Construct(builder);
 builder.Vehicle.Show();

 builder = new MotorCycleBuilder();
 shop.Construct(builder);
 builder.Vehicle.Show();

 // Wait for the user

 Console.ReadKey();
 }
 }

 /// <summary> The 'Director' class </summary>

242 ◾ Appraisal

 class Shop
 {
 // Builder uses complex series of the steps

 public void Construct(VehicleBuilder
vehicleBuilder)
 {
 vehicleBuilder.BuildFrame();
 vehicleBuilder.BuildEngine();
 vehicleBuilder.BuildWheels();
 vehicleBuilder.BuildDoors();
 }
 }

 /// <summary> The 'Builder' abstract class </summary>

 abstract class VehicleBuilder
 {
 protected Vehicle vehicle;

 // Gets the vehicle instance

 public Vehicle Vehicle
 {
 get { return vehicle; }
 }

 // Abstract the build methods

 public abstract void BuildFrame();
 public abstract void BuildEngine();
 public abstract void BuildWheels();
 public abstract void BuildDoors();
 }

 /// <summary> The 'ConcreteBuilder1' class </summary>

 class MotorCycleBuilder : VehicleBuilder
 {
 public MotorCycleBuilder()
 {
 vehicle = new Vehicle("MotorCycle");
 }

 public override void BuildFrame()
 {
 vehicle["frame"] = "MotorCycle-Frame";
 }

Appraisal ◾ 243

 public override void BuildEngine()
 {
 vehicle["engine"] = "520 cc";
 }

 public override void BuildWheels()
 {
 vehicle["wheels"] = "2";
 }

 public override void BuildDoors()
 {
 vehicle["doors"] = "0";
 }
 }

 /// <summary> The 'ConcreteBuilder2' class </summary>

 class CarBuilder : VehicleBuilder
 {
 public CarBuilder()
 {
 vehicle = new Vehicle("Car");
 }

 public override void BuildFrame()
 {
 vehicle["frame"] = "Car-Frame";
 }

 public override void BuildEngine()
 {
 vehicle["engine"] = "2800 cc";
 }

 public override void BuildWheels()
 {
 vehicle["wheels"] = "4";
 }

 public override void BuildDoors()
 {
 vehicle["doors"] = "4";
 }
 }

 /// <summary> The 'ConcreteBuilder3' class </summary>

244 ◾ Appraisal

 class ScooterBuilder : VehicleBuilder
 {
 public ScooterBuilder()
 {
 vehicle = new Vehicle("Scooter");
 }

 public override void BuildFrame()
 {
 vehicle["frame"] = "Scooter-Frame";
 }

 public override void BuildEngine()
 {
 vehicle["engine"] = "52 cc";
 }

 public override void BuildWheels()
 {
 vehicle["wheels"] = "2";
 }

 public override void BuildDoors()
 {
 vehicle["doors"] = "0";
 }
 }

 /// <summary> The 'Product' class </summary>

 class Vehicle
 {
 private string _vehicleType;
 private Dictionary<string, string> _parts =
 new Dictionary<string, string>();
 // Constructor

 public Vehicle(string vehicleType)
 {
 this._vehicleType = vehicleType;
 }

 // Indexer

 public string this[string key]
 {
 get { return _parts[key]; }
 set { _parts[key] = value; }
 }

Appraisal ◾ 245

PROTOTYPE PATTERN
The Prototype Pattern is a Creational Design Pattern that seeks to mini-
mize the number of classes needed in an application. It enables you to
duplicate existing objects regardless of how their classes are implemented
in practice. In general, the object is formed here by running-time cloning
of a prototype instance.

It is strongly advised to utilize the Prototype Pattern when creating an
item is a time-consuming and resource-intensive operation when a simi-
lar object already exists. This approach allows us to replicate the original
object and then alter it to meet our needs.

Problems We Confront in the Absence of the Prototype Pattern

Assume we have a Shape class that generates various forms like as circles,
rectangles, squares, and so on, and we already have one object of it. Now
we want to make an identical duplicate of this item. How would a typical
developer fare?

He or she will build a new object of the same class, applying all of the
original objects’ functions and properties. However, we cannot replicate
every field of the original object since some may be secret or protected and
not accessible from the outside of the object.

The difficulties do not end here. We also become reliant on the code of
another class, which is never a good thing in software development.

 public void Show()
 {
 Console.WriteLine("\n--------------");
 Console.WriteLine("Vehicle Type is: {0}",
_vehicleType);
 Console.WriteLine(" Frame is: {0}",
_parts["frame"]);
 Console.WriteLine(" Engine is: {0}",
_parts["engine"]);
 Console.WriteLine(" #Wheels is: {0}",
_parts["wheels"]);
 Console.WriteLine(" #Doors is: {0}",
_parts["doors"]);
 }
 }
}

246 ◾ Appraisal

For a better understanding, consider the example of Courses at
PeeksforPeeks, which offers courses such as SDE, DSA, STL, and so on.
Creating objects for similar courses again and over is not a suitable activity
for improved resource use.

concrete-course
class DSA():
 """Class for the Data Structures and Algorithms"""

 def Type(self):
 return "Data-Structures and Algorithms"

 def __str__(self):
 return "DSA"

concrete-course
class SDE():
 """Class for the Software development Engineer"""

 def Type(self):
 return "Software-Development Engineer"

 def __str__(self):
 return "SDE"

concrete course
class STL():
 """class for the Standard Template Library of C++"""

 def Type(self):
 return "Standard-Template Library"

 def __str__(self):
 return "STL"

main method
if __name__ == "__main__":
 sde = SDE() # object for the SDE
 dsa = DSA() # object for the DSA
 stl = STL() # object for the STL

Appraisal ◾ 247

Prototype Pattern Solution

To address such issues, we employ the Prototype Pattern. We’d make
distinct classes for Courses_At_PFP and Course_At_PFP Cache, which
would allow us to make an identical replica of an existing object with the
same field attributes. This method delegated the cloning operation to the
actual copied objects. In this section, we create a common interface or
class that enables object cloning, allowing us to clone the object without
attaching our code to the class of that function.

A prototype is an object that allows for cloning.

import required modules

from abc import ABCMeta, abstractmethod
import copy

class - Courses at PeeksforPeeks
class Courses_At_PFP(metaclass = ABCMeta):

 # constructor
 def __init__(self):
 self.id = None
 self.type = None

 @abstractmethod
 def course(self):
 pass

 def get_type(self):
 return self.type

 def get_id(self):
 return self.id

 print(f'Name of the Course: {sde} and its type:
{sde.Type()}')
 print(f'Name of the Course: {stl} and its type:
{stl.Type()}')
 print(f'Name of the Course: {dsa} and its type:
{dsa.Type()}')

248 ◾ Appraisal

 def set_id(self, sid):
 self.id = sid

 def clone(self):
 return copy.copy(self)

class - DSA course
class DSA(Courses_At_PFP):
 def __init__(self):
 super().__init__()
 self.type = "Data-Structures and Algorithms"

 def course(self):
 print("Inside the DSA::course() method")

class - SDE Course
class SDE(Courses_At_PFP):
 def __init__(self):
 super().__init__()
 self.type = "Software-Development Engineer"

 def course(self):
 print("Inside SDE::course() method.")

class - STL Course
class STL(Courses_At_PFP):
 def __init__(self):
 super().__init__()
 self.type = "Standard-Template Library"

 def course(self):
 print("Inside STL::course() method.")

class - Courses At PeeksforPeeks Cache
class Courses_At_PFP_Cache:

 # cache to store the useful information
 cache = {}

 @staticmethod
 def get_course(sid):
 COURSE = Courses_At_PFP_Cache.cache.get(sid, None)
 return COURSE.clone()

 @staticmethod
 def load():

Appraisal ◾ 249

Advantages

• Less Subclasses: All of the other Creational Design Patterns intro-
duce a slew of new subclasses, which can be difficult to manage
when working on a large project. We may avoid this by adopting the
Prototype Design Pattern.

• Gives different values to new objects: All highly dynamic systems
allow us to implement new behavior through object composition by
declaring values for an object’s variables rather than by establishing
new classes.

• Gives new objects varied structure: Generally, all programs con-
struct objects from parts and subparts. For our convenience, such
apps frequently allow us to create sophisticated, user-defined struc-
tures to reuse a specific subcircuit.

 sde = SDE()
 sde.set_id("1")
 Courses_At_PFP_Cache.cache[sde.get_id()] = sde

 dsa = DSA()
 dsa.set_id("2")
 Courses_At_PFP_Cache.cache[dsa.get_id()] = dsa

 stl = STL()
 stl.set_id("3")
 Courses_At_PFP_Cache.cache[stl.get_id()] = stl

main function
if __name__ == '__main__':
 Courses_At_PFP_Cache.load()

 sde = Courses_At_PFP_Cache.get_course("1")
 print(sde.get_type())

 dsa = Courses_At_PFP_Cache.get_course("2")
 print(dsa.get_type())

 stl = Courses_At_PFP_Cache.get_course("3")
 print(stl.get_type())

250 ◾ Appraisal

Drawbacks

• Abstraction: It aids in abstraction by concealing the specific imple-
mentation details of the class.

• Lower-Level Resource Waste: It may be proven to be an overload of
resources for a project that employs very few objects.

Applicability

• Independence from Concrete Class: The prototype Pattern allows
us to implement new objects without relying on the concrete imple-
mentation of the class.

• Recurring Difficulties: The prototype technique is often used
to handle recurring and complicated software development
challenges.

Prototype Pattern Usage

• At runtime, when the classes are instantiated.

• When the cost of producing an object is high or complicated.

• When you want to keep the number of classes in an application as
low as possible.

• When the client application must be unaware of the creation and
representation of objects.

In Java, an Example of the Prototype Design Pattern

Let’s look at an example of the Prototype Design Pattern.
File: Prototype.java

interface Prototype {

 public Prototype getClone();

}//End of the Prototype interface.

Appraisal ◾ 251

File: EmployeeRecord.java

class EmployeeRecord implements Prototype{

 private int id;
 private String names, designation;
 private double salary;
 private String address;

 public EmployeeRecord(){
 System.out.println(" Employee Records of
Oracle Corporation ");
 System.out.println("-----------------------");
 System.out.
println("Eid"+"\t"+"Enames"+"\t"+"Edesignation"+"\
t"+"Esalary"+"\t\t"+"Eaddress");

 }

 public EmployeeRecord(int id, String names, String
designation, double salary, String address) {

 this();
 this.id = id;
 this.names = names;
 this.designation = designation;
 this.salary = salary;
 this.address = address;
 }

 public void showRecord(){

 System.out.
println(id+"\t"+names+"\t"+designation+"\t"+salary+"\
t"+address);
 }

 @Override
 public Prototype getClone() {

 return new EmployeeRecord(id,names,designation,
salary,address);
 }
 }//End of the EmployeeRecord class.

252 ◾ Appraisal

File: PrototypeDemo.java

Prototype Pattern in C#

The Prototype Design Pattern specifies the type of objects to create by
using a prototypical instance and then copying this prototype to create
new objects.

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;

class PrototypeDemo{
 public static void main(String[] args) throws
IOException {

 BufferedReader br =new BufferedReader(new
InputStreamReader(System.in));
 System.out.print("Enter the Employee Id: ");
 int eid=Integer.parseInt(br.readLine());
 System.out.print("\n");

 System.out.print("Enter the Employee Names: ");
 String ename=br.readLine();
 System.out.print("\n");

 System.out.print("Enter the Employee Designation: ");
 String edesignation=br.readLine();
 System.out.print("\n");

 System.out.print("Enter the Employee Address: ");
 String eaddress=br.readLine();
 System.out.print("\n");

 System.out.print("Enter the Employee Salary: ");
 double esalary= Double.parseDouble(br.readLine());
 System.out.print("\n");

 EmployeeRecord e1=new EmployeeRecord(eid,enames,
edesignation,esalary,eaddress);

 e1.showRecord();
 System.out.println("\n");
 EmployeeRecord e2=(EmployeeRecord) e1.getClone();
 e2.showRecord();
 }
}//End of ProtoypeDemo class.

Appraisal ◾ 253

Participants
This pattern’s classes and objects are as follows:

1. Prototype (ColorPrototype):

• Declares an interface for cloning itself.

2. ConcretePrototype (Color):

• Implements a cloning operation.

3. Client (ColorManager):

• Makes a new object by requesting that a prototype clone itself.

C# Structural Code

This structural code demonstrates the Prototype pattern, which involves
creating new objects by copying preexisting objects (prototypes) of the
same class.

using System;

namespace Prototype.Structural
{
 /// <summary> Prototype Design Pattern </summary>

 public class Program
 {
 public static void Main(string[] args)
 {
 // Create the two instances and clone each

 ConcretePrototype1 p1 = new
ConcretePrototype1("I");
 ConcretePrototype1 c1 = (ConcretePrototype1)
p1.Clone();
 Console.WriteLine("Cloned: {0}", c1.Id);

 ConcretePrototype2 p2 = new
ConcretePrototype2("II");
 ConcretePrototype2 c2 = (ConcretePrototype2)
p2.Clone();
 Console.WriteLine("Cloned: {0}", c2.Id);

 // Wait for the user

254 ◾ Appraisal

 Console.ReadKey();
 }
 }

 /// <summary> The 'Prototype' abstract class </summary>

 public abstract class Prototype
 {
 string id;

 // Constructor

 public Prototype(string id)
 {
 this.id = id;
 }

 // Gets-id

 public string Id
 {
 get { return id; }
 }

 public abstract Prototype Clone();
 }

 /// <summary> A 'ConcretePrototype' class </summary>

 public class ConcretePrototype1 : Prototype
 {
 // Constructor

 public ConcretePrototype1(string id)
 : base(id)
 {
 }

 // Returns shallow copy

 public override Prototype Clone()
 {
 return (Prototype)this.MemberwiseClone();
 }
 }

 /// <summary> A 'ConcretePrototype' class </summary>

Appraisal ◾ 255

Real-World Code in C#

This code demonstrates the Prototype pattern, which creates new Color
objects by copying preexisting, user-defined Colors of the same type.

 public class ConcretePrototype2 : Prototype
 {
 // Constructor

 public ConcretePrototype2(string id)
 : base(id)
 {
 }

 // Returns shallow copy

 public override Prototype Clone()
 {
 return (Prototype)this.MemberwiseClone();
 }
 }
}

using System;
using System.Collections.Generic;

namespace Prototype.RealWorld
{
 /// <summary> Prototype Design Pattern </summary>

 public class Program
 {
 public static void Main(string[] args)
 {
 ColorManager colormanager = new ColorManager();

 // Initialize with the standard colors

 colormanager["red"] = new Color(255, 0, 0);
 colormanager["green"] = new Color(0, 255, 0);
 colormanager["blue"] = new Color(0, 0, 255);

 // User adds the personalized colors

256 ◾ Appraisal

 colormanager["angry"] = new Color(255, 54, 0);
 colormanager["peace"] = new Color(128, 211, 128);
 colormanager["flame"] = new Color(211, 34, 20);

 // User clones the selected colors

 Color color1 = colormanager["red"].Clone() as
Color;
 Color color2 = colormanager["peace"].Clone() as
Color;
 Color color3 = colormanager["flame"].Clone() as
Color;

 // Wait for the user

 Console.ReadKey();
 }
 }

 /// <summary> The 'Prototype' abstract class </summary>

 public abstract class ColorPrototype
 {
 public abstract ColorPrototype Clone();
 }

 /// <summary> The 'ConcretePrototype' class </summary>

 public class Color : ColorPrototype
 {
 int red;
 int green;
 int blue;

 // Constructor

 public Color(int red, int green, int blue)
 {
 this.red = red;
 this.green = green;
 this.blue = blue;
 }

 // Create shallow copy

 public override ColorPrototype Clone()
 {
 Console.WriteLine(

Appraisal ◾ 257

ABSTRACT FACTORY PATTERN
The Abstract Factory Pattern is a Creational Design pattern that allows us
to create families of linked items without having to describe their particu-
lar classes. We have the simplest technique to make a comparable kind of
numerous objects by using the abstract Factory Pattern.

It allows us to encapsulate a collection of separate factories. Essentially,
we are attempting to abstract the development of objects based on logic,
business, platform selection, and so on.

Problems We Confront in the Absence of the Abstract Factory Pattern

Assume we want to be a part of one of the exclusive batches of PeeksforPeeks.
So we’ll go there and inquire about the offered Courses, their Fee Structure,
their Timings, and other vital details. They will just examine their system
and provide us with all the information we want. Does it appear simple?
Consider how the developers structure the system and make their website
so lubricious.

Developers will create distinct classes for each course, each with its own
set of attributes such as fee structure, timings, etc. But how will they call
them and instantiate their objects?

 "Cloning color RGB: {0,3},{1,3},{2,3}",
 red, green, blue);
 return this.MemberwiseClone() as ColorPrototype;
 }
 }

 /// <summary> Prototype manager </summary>

 public class ColorManager
 {
 private Dictionary<string, ColorPrototype> colors =
 new Dictionary<string, ColorPrototype>();

 // Indexer

 public ColorPrototype this[string key]
 {
 get { return colors[key]; }
 set { colors.Add(key, value); }
 }
 }
}

258 ◾ Appraisal

Here’s the issue: imagine there were just three-four courses offered at
PeeksforPeeks at first, but they added five additional courses.

As a result, we must manually initialize their objects, which is undesir-
able from the developer’s perspective.

Python Code for the object
oriented concepts without using
the Abstract factory
method in the class

class DSA:

 """ Class for the Data Structure and Algorithms """

 def price(self):
 return 13000

 def __str__(self):
 return "DSA"

class STL:

 """Class for the Standard Template Library"""

 def price(self):
 return 9000

 def __str__(self):
 return "STL"

class SDE:

 """Class for the Software Development Engineer"""

 def price(self):
 return 19000

 def __str__(self):
 return 'SDE'

main method
if __name__ == "__main__":

 sde = SDE() # object for the SDE class
 dsa = DSA() # object for the DSA class
 stl = STL() # object for the STL class

Appraisal ◾ 259

Solution Based on the Abstract Factory Pattern

Its answer is to replace the plain object formation calls with calls to the
specific abstract factory function. There will be no change in the object’s
construction, but they will call within the factory function.

We will construct a new class called Course_At_PFP that will automat-
ically handle all object initialization. We no longer have to be concerned
about how many courses we will add over time.

Python Code for the object
oriented concepts using the
abstract factory design pattern

import random

class Course_At_PFP:

 """ PeeksforPeeks portal for the courses """

 def __init__(self, courses_factory = None):
 """course-factory is out abstract-factory"""

 self.course_factory = courses_factory

 def show_course(self):

 """creates and shows courses using abstract
factory"""

 course = self.course_factory()

 print(f'We have course named {course}')
 print(f'its price is {course.Fee()}')

class DSA:

 """Class for the Data Structure and Algorithms"""

 print(f'Name of course is {sde} and its price is
{sde.price()}')
 print(f'Name of course is {dsa} and its price is
{dsa.price()}')
 print(f'Name of course is {stl} and its price is
{stl.price()}')

260 ◾ Appraisal

Advantages of Using the Abstract Factory Pattern

• This pattern is especially useful when the client is unsure what type
to create.

• Introducing new product variants without breaking the existing cli-
ent code is simple.

• The products we receive from the Factory are unquestionably com-
patible with one another.

 def Fee(self):
 return 13000

 def __str__(self):
 return "DSA"

class STL:

 """Class for the Standard Template Library"""

 def Fee(self):
 return 9000

 def __str__(self):
 return "STL"

class SDE:

 """Class for Software Development Engineer"""

 def Fee(self):
 return 19000

 def __str__(self):
 return 'SDE'

def random_course():

 """A random class for the choosing the course"""

 return random.choice([SDE, STL, DSA])()

if __name__ == "__main__":

 course = Course_At_PFP(random_course)

 for i in range(6):
 course.show_course()

Appraisal ◾ 261

Disadvantages of Using Abstract Factory Pattern

• Due to the existence of many classes, our simple code may become
complicated.

• We end up with many small files, resulting in file clutter.

Applicability

• Abstract Factory patterns are most commonly found in sheet metal
stamping equipment used to manufacture automobiles.

• It can use in a system that must process reports from various catego-
ries, such as input, output, and intermediate exchanges.

Abstract Factory Pattern Usage

• When the system must be self-contained in terms of how its objects
are created, composed, and represented.

• This constraint must be enforced when a family of related objects
must be used together.

• When we want to provide an object library that does not show imple-
mentations but only exposes interfaces.

• When the system must be configured with one of several families of
objects.

In Java, an Example of the Abstract Factory Pattern

We calculate loan payments for various banks such as DFC, ICICI, and BI.

• Step 1: Design a bank interface.

import java.io.*;
interface Bank{
 String getBankName();
}

262 ◾ Appraisal

• Step 2: Implement the Bank interface in concrete classes.

• Step 3: Create the abstract class Loan.

abstract class Loan{
 protected double rate;
 abstract void getInterestRate(double rate);
 public void calculateLoanPayment(double loanamount,
int years)
 {
 /* to calculate monthly loan payment i.e., EMI

 rate=annual interest rate/12*100;
 n=number of the monthly installments;
 1year=12 months.
 so, n=years*12;

class DFC implements Bank{
 private final String BNAME;
 public HDFC(){
 BNAME="DFC BANK";
 }
 public String getBankName() {
 return BNAME;
 }
}

class ICCI implements Bank{
 private final String BNAME;
 ICCI(){
 BNAME="ICCI BANK";
 }
 public String getBankName() {
 return BNAME;
 }
}

class BI implements Bank{
 private final String BNAME;
 public BI(){
 BNAME="BI BANK";
 }
 public String getBankName(){
 return BNAME;
 }
}

Appraisal ◾ 263

• Step 4: Design concrete classes that extend the abstract Loan class.

• Step 5: Create an abstract class (i.e., AbstractFactory) to obtain the
factories for Bank and Loan Objects.

 */

 double EMI;
 int n;

 n=years*12;
 rate=rate/1200;
 EMI=((rate*Math.pow((1+rate),n))/((Math.
pow((1+rate),n))-1))*loanamount;

 System.out.println("our monthly EMI is "+ EMI +" for
amount"+loanamount+" we have borrowed");
 }
 }// end of Loan abstract class.

abstract class AbstractFactory{
 public abstract Bank getBank(String bank);
 public abstract Loan getLoan(String loan);
 }

class EducationLoan extends Loan{
 public void getInterestRate(double r1){
 rate=r1;
}
}//End of EducationLoan class.

class BussinessLoan extends Loan{
 public void getInterestRate(double r1){
 rate=r1;
 }

}//End of BusssinessLoan class.

class HomeLoan extends Loan{
 public void getInterestRate(double r1){
 rate=r1;
 }
}//End of HomeLoan class.

264 ◾ Appraisal

• Step 6: Create factory classes that inherit from the AbstractFactory
class in order to produce concrete class objects based on the informa-
tion provided.

class LoanFactory extends AbstractFactory{
 public Bank getBank(String bank){
 return null;
 }

public Loan getLoan(String loan){
if(loan == null){
 return null;
}
if(loan.equalsIgnoreCase("Home")){
 return new HomeLoan();
} else if(loan.equalsIgnoreCase("Business")){
 return new BussinessLoan();
} else if(loan.equalsIgnoreCase("Education")){
 return new EducationLoan();
}
return null;
} }

class BankFactory extends AbstractFactory{
 public Bank getBank(String bank){
 if(bank == null){
 return null;
 }
 if(bank.equalsIgnoreCase("DFC")){
 return new DFC();
 } else if(bank.equalsIgnoreCase("ICCI")){
 return new ICCI();
 } else if(bank.equalsIgnoreCase("BI")){
 return new BI();
 }
 return null;
 }
 public Loan getLoan(String loan) {
 return null;
 }
 }//End of BankFactory class.

Appraisal ◾ 265

• Step 7: Create a FactoryCreator class to obtain factories by passing
information like Bank or Loan.

• Step 8: Use the FactoryCreator to obtain AbstractFactory in order to
obtain concrete class factories by passing information such as type.

import java.io.*;
class AbstractFactoryPatternExample {
 public static void main(String args[])throws
IOException {

 BufferedReader br=new BufferedReader(new
InputStreamReader(System.in));

 System.out.print("Enter name of Bank from where
we want to take loan amount: ");
 String bankName=br.readLine();

System.out.print("\n");
System.out.print("Enter type of loan e.g. home loan or
business loan or education loan : ");

String loanName=br.readLine();
AbstractFactory bankFactory = FactoryCreator.
getFactory("Bank");
Bank b=bankFactory.getBank(bankName);

System.out.print("\n");
System.out.print("Enter interest rate for "+b.
getBankName()+ ": ");

double rate=Double.parseDouble(br.readLine());
System.out.print("\n");
System.out.print("Enter loan amount we want to take: ");

class FactoryCreator {
 public static AbstractFactory getFactory(String
choice){
 if(choice.equalsIgnoreCase("Bank")){
 return new BankFactory();
 } else if(choice.equalsIgnoreCase("Loan")){
 return new LoanFactory();
 }
 return null;
 }
}//End of FactoryCreator.

266 ◾ Appraisal

Abstract Factory Pattern in C#

The Abstract Factory Pattern provides an interface for generating fami-
lies of linked or dependent items without describing their concrete
classes.

Participants
This pattern’s classes and objects are as follows:

1. AbstractFactory (ContinentFactory):

• Specifies an interface for operations that produce abstract
products.

2. ConcreteFactory (AfricaFactory, AmericaFactory):

• Carries out activities to produce concrete product items.

3. AbstractProduct (Herbivore, Carnivore):

• Defines an interface for a product object type.

4. Product (Wildebeest, Lion, Bison, Wolf):

• A product object defined by the relevant concrete factory.

• AbstractProduct interface is implemented.

double loanAmount=Double.parseDouble(br.readLine());
System.out.print("\n");
System.out.print("Enter number of years to pay our
entire loan amount: ");
int years=Integer.parseInt(br.readLine());

System.out.print("\n");
System.out.println("we are taking loan from "+
b.getBankName());

AbstractFactory loanFactory = FactoryCreator.
getFactory("Loan");
 Loan l=loanFactory.getLoan(loanName);
 l.getInterestRate(rate);
 l.calculateLoanPayment(loanAmount,years);
 }
}//End of AbstractFactoryPatternExample

Appraisal ◾ 267

5. Client (AnimalWorld):

• Uses interfaces specified by the AbstractFactory and
AbstractProduct classes.

C# Structural Code

The Abstract Factory pattern creates parallel hierarchies of objects in this
structured code. Object generation has been abstracted, so client code has
no requirement to include hard-coded class names.

using System;

namespace DoFactory.GangOfFour.Abstract.Structural
{
 /// <summary> MainApp startup class for Structural
 /// Abstract Factory Design Pattern. </summary>

 class MainApp
 {
 /// <summary> Entry point into the console
application. </summary>

 public static void Main()
 {
 // Abstract-factory #1

 AbstractFactory factory1 =
new ConcreteFactory1();
 Client client1 = new Client(factory1);
 client1.Run();

 // Abstract-factory #2

 AbstractFactory factory2 =
new ConcreteFactory2();
 Client client2 = new Client(factory2);
 client2.Run();

 // Wait for the user input

 Console.ReadKey();
 }
 }

 /// <summary> The 'AbstractFactory' abstract class
 /// </summary>

268 ◾ Appraisal

 abstract class AbstractFactory
 {
 public abstract AbstractProductX CreateProductX();
 public abstract AbstractProductY CreateProductY();
 }

 /// <summary> The 'ConcreteFactory1' class
 /// </summary>

 class ConcreteFactory1 : AbstractFactory
 {
 public override AbstractProductX CreateProductX()
 {
 return new ProductX1();
 }
 public override AbstractProductY CreateProductY()
 {
 return new ProductY1();
 }
 }

 /// <summary> The 'ConcreteFactory2' class
 /// </summary>

 class ConcreteFactory2 : AbstractFactory
 {
 public override AbstractProductX CreateProductX()
 {
 return new ProductX2();
 }
 public override AbstractProductY CreateProductY()
 {
 return new ProductY2();
 }
 }

 /// <summary> The 'AbstractProductX' abstract class
 /// </summary>

 abstract class AbstractProductX
 {
 }

 /// <summary> The 'AbstractProductY' abstract class
 /// </summary>

 abstract class AbstractProductY
 {

Appraisal ◾ 269

 public abstract void Interact(AbstractProductX a);
 }

 /// <summary> The 'ProductA1' class
 /// </summary>

 class ProductX1 : AbstractProductX
 {
 }

 /// <summary> The 'ProductY1' class
 /// </summary>

 class ProductY1 : AbstractProductY
 {
 public override void Interact(AbstractProductX a)
 {
 Console.WriteLine(this.GetType().Name +
 " interacts with " + a.GetType().Name);
 }
 }

 /// <summary> The 'ProductX2' class
 /// </summary>

 class ProductX2 : AbstractProductX
 {
 }

 /// <summary> The 'ProductB2' class
 /// </summary>

 class ProductY2 : AbstractProductY
 {
 public override void Interact(AbstractProductX a)
 {
 Console.WriteLine(this.GetType().Name +
 " interacts with " + a.GetType().Name);
 }
 }

 /// <summary> The 'Client' class. Interaction
environment for the products.
 /// </summary>

 class Client
 {
 private AbstractProductX _abstractProductX;
 private AbstractProductY _abstractProductY;

270 ◾ Appraisal

Real-World C# Code

This real-world code explains how to use several factories to create
diverse animal worlds for a computer game. Although the creatures
made by the Continent factories varied, their interactions with one
another do not.

using System;

namespace DoFactory.GangOfFour.Abstract.RealWorld
{
 /// <summary> MainApp startup class for Real-World
 /// Abstract Factory Design Pattern. </summary>

 class MainApp
 {
 /// <summary> Entry point into the console
application.
 /// </summary>

 public static void Main()
 {
 // Create and run the African animal world

 ContinentFactory africa = new AfricaFactory();
 AnimalWorld world = new AnimalWorld(africa);
 world.RunFoodChain();

 // Create and run the American animal world

 // Constructor

 public Client(AbstractFactory factory)
 {
 _abstractProductY = factory.CreateProductY();
 _abstractProductX = factory.CreateProductX();
 }

 public void Run()
 {
 _abstractProductY.Interact(_abstractProductX);
 }
 }
}

Appraisal ◾ 271

 ContinentFactory america = new AmericaFactory();
 world = new AnimalWorld(america);
 world.RunFoodChain();

 // Wait for the user input

 Console.ReadKey();
 }
 }

 /// <summary> The 'AbstractFactory' abstract class
 /// </summary>

 abstract class ContinentFactory
 {
 public abstract Herbivore CreateHerbivore();
 public abstract Carnivore CreateCarnivore();
 }

 /// <summary> The 'ConcreteFactory1' class
 /// </summary>

 class AfricaFactory : ContinentFactory
 {
 public override Herbivore CreateHerbivore()
 {
 return new Wildebeest();
 }
 public override Carnivore CreateCarnivore()
 {
 return new Lion();
 }
 }

 /// <summary> The 'ConcreteFactory2' class
 /// </summary>

 class AmericaFactory : ContinentFactory
 {
 public override Herbivore CreateHerbivore()
 {
 return new Bison();
 }
 public override Carnivore CreateCarnivore()
 {
 return new Wolf();
 }
 }

272 ◾ Appraisal

 /// <summary> The 'AbstractProductA' abstract class
 /// </summary>

 abstract class Herbivore
 {
 }

 /// <summary> The 'AbstractProductB' abstract class
 /// </summary>

 abstract class Carnivore
 {
 public abstract void Eat(Herbivore h);
 }

 /// <summary> The 'ProductA1' class
 /// </summary>

 class Wildebeest : Herbivore
 {
 }

 /// <summary> The 'ProductB1' class
 /// </summary>

 class Lion : Carnivore
 {
 public override void Eat(Herbivore h)
 {
 // Eat-Wildebeest

 Console.WriteLine(this.GetType().Name +
 " eats " + h.GetType().Name);
 }
 }

 /// <summary> The 'ProductA2' class
 /// </summary>

 class Bison : Herbivore
 {
 }

 /// <summary> The 'ProductB2' class
 /// </summary>

 class Wolf : Carnivore
 {

Appraisal ◾ 273

COMPOSITE PATTERN
The Composite Pattern is a Structural Design Pattern that describes a
group of objects that are handled in the same manner as a single instance
of the same type of object. The Composite Method’s goal is to compose
items into Tree type structures to express whole-partial hierarchies.

One of the primary benefits of utilizing the Composite Pattern is that
it allows us first to compose the objects into the Tree Structure and then
operate with these structures as a single object or entity.

The procedures available on all composite objects frequently have a least
common denominator connection.

 public override void Eat(Herbivore h)
 {
 // Eat Bison

 Console.WriteLine(this.GetType().Name +
 " eats " + h.GetType().Name);
 }
 }

 /// <summary> The 'Client' class
 /// </summary>

 class AnimalWorld
 {
 private Herbivore _herbivore;
 private Carnivore _carnivore;

 // Constructor

 public AnimalWorld(ContinentFactory factory)
 {
 _carnivore = factory.CreateCarnivore();
 _herbivore = factory.CreateHerbivore();
 }

 public void RunFoodChain()
 {
 _carnivore.Eat(_herbivore);
 }
 }
}

274 ◾ Appraisal

Four groups are participating with the Composite Pattern:

Participants of Composite Pattern.

1. Component: A component aids in implementing the default behav-
ior for the interface shared by all classes as needed. It specifies the
interface of the composition’s objects and the methods for accessing
and controlling its child components.

2. Leaf: It determines the behavior of the composition’s primitive items.
It represents the composition’s leaf item.

3. Composite: It holds the child component and performs child-related
activities in the component interface.

4. Client: It manipulates the composition’s objects via the component
interface.

The Problem without the Use of the Composite Pattern

Assume we are investigating an organizational structure comprised of
General Managers, Managers, and Developers. A General Manager may

Appraisal ◾ 275

have numerous Managers reporting to him, while a Manager may have
many developers reporting.

Assume we need to figure out the total compensation of all workers. So,
how would you go about doing that?

An average developer would almost certainly take the direct technique,
going through each person and calculating the overall wage. It looks sim-
ple, doesn’t it? Not so when it comes to implementation. Because we need
to know the classes of all the workers, including the General Manager,
Manager, and Developers.

In a tree-based structure, it appears to be an impossible problem to
solve using a direct method.

Composite Pattern Solution

One of the most satisfactory answers to the difficulty above is to work
with a standard interface that provides a function for computing the total
salary.

When we have “composites that contain components, each of which
may be a composite,” we often employ the Composite Pattern.

"""Here we attempt to make organizational hierarchy with
the sub-organization,
which may have subsequent sub-organizations, like:
GeneralManager [Composite]
 Manager1 [Composite]
 Developer11 [Leaf]
 Developer12 [Leaf]
 Manager2 [Composite]
 Developer21 [Leaf]
 Developer22 [Leaf]"""

class LeafElement:

 '''Class representing objects at bottom or Leaf of the
hierarchy tree'''

 def __init__(self, *args):

 ''''Takes first positional argument and assigns to
the member variable "position".'''
 self.position = args[0]

 def showDetails(self):

276 ◾ Appraisal

 '''Prints position of the child element.'''
 print("\t", end ="")
 print(self.position)

class CompositeElement:

 '''Class represents objects at any level of the
hierarchy
 tree except for the bottom or leaf level. Maintains
child
 objects by adding and removing them from the tree
structure'''

 def __init__(self, *args):

 '''Takes first positional argument and assigns to
member
 variable "position". Initializes list of children
elements'''
 self.position = args[0]
 self.children = []

 def add(self, child):

 '''Adds supplied child element to list of children
 elements "children".'''
 self.children.append(child)

 def remove(self, child):

 '''Removes supplied child element from list of
 children elements "children".'''
 self.children.remove(child)

 def showDetails(self):

 '''Prints details of component element first. Then,
 iterates over each of its children, prints their
details by
 calling their showDetails() method'''
 print(self.position)
 for child in self.children:
 print("\t", end ="")
 child.showDetails()

"""main-method"""

if __name__ == "__main__":

Appraisal ◾ 277

Advantages

The Open/Closed Principle is followed because introducing new com-
ponents, classes, and interfaces into the program are permitted without
damaging the client’s current code.

• Less Memory Consumption: In this technique, we must construct
fewer objects than in the traditional manner, decreasing memory
consumption and keeping us safe from memory mistakes.

• Improved Execution Time: Although creating an object in Python
takes little time, we may minimize the execution time of our applica-
tion by sharing objects.

It gives structural flexibility with manageable classes or interfaces by cre-
ating class hierarchies that comprise basic and complicated objects.

Disadvantages

• Component Restriction: The Composite Pattern makes limiting
the kind of composite components more challenging. It should not
use if we do not intend to depict a complete or partial hierarchy of
objects.

• Once the structure of the tree is determined, the Composite Pattern
will construct the overall general tree.

 topLevelMenu = CompositeElement("GeneralManager")
 subMenuItem1 = CompositeElement("Manager-1")
 subMenuItem2 = CompositeElement("Manager2")
 subMenuItem11 = LeafElement("Developer-11")
 subMenuItem12 = LeafElement("Developer-12")
 subMenuItem21 = LeafElement("Developer-21")
 subMenuItem22 = LeafElement("Developer-22")
 subMenuItem1.add(subMenuItem-11)
 subMenuItem1.add(subMenuItem-12)
 subMenuItem2.add(subMenuItem-22)
 subMenuItem2.add(subMenuItem-22)

 topLevelMenu.add(subMenuItem-1)
 topLevelMenu.add(subMenuItem-2)
 topLevelMenu.showDetails()

278 ◾ Appraisal

• Language Type-System: Because it is not permitted to utilize the
programming language’s type system, our program must rely on
run-time checks to enforce the limitations.

Applicability

• Nested Tree Structure is required: When creating a hierarchical
tree structure, which includes leaves objects and other object con-
tainers, the Composite Pattern is strongly recommended.

• Graphic Designer: A shape can be classified as basic (e.g., a straight
line) or complicated (e.g., a rectangle). Because all shapes share sim-
ilar activities, such as displaying the shape on screen, a composite
pattern can be utilized to allow the computer to deal with all shapes
equally.

Use of a Composite Pattern

It is used as follows:

• When we wish to depict an entire or partial object hierarchy.

• When responsibilities must dynamically assigned to particular
objects without impacting other objects. Where the object’s duty
may change from time to time.

Elements of the Composite Pattern: Let’s look at the four elements of the
composite pattern:

1. Component:

• Declares the interface for the items in the composition.

• As appropriate, implements default behavior for the interface
shared by all classes.

• Declares an interface for controlling and accessing its child
components.

2. Leaf:

• In composition, this item represents a leaf. A leaf has no offspring.

• Defines the behavior of the composition’s basic objects.

Appraisal ◾ 279

3. Composite:

• Defines the behavior of components with children.

• Saves the child component.

• In the component interface, it implements child-related
operations.

4. Client:

• The component interface is used to manipulate items in the
composition.

In Java, an Example of a Composite Pattern

• Step 1: Design an Employee interface that will be used as a
component.

• Step 2: Create a BankManager class that will use as a Composite and
will implement the Employee interface.

File: BankManager.java

// this is BankManager class i.e. Composite.
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
public class BankManager implements Employee {
 private int id;
 private String names;
 private double salary;

// this is Employee interface i.e. Component.
public interface Employee {
 public int getId();
 public String getNames();
 public double getSalary();
 public void print();
 public void add(Employee employee);
 public void remove(Employee employee);
 public Employee getChild(int x);
}// End of Employee interface.

280 ◾ Appraisal

 public BankManager(int id, String names, double
salary) {
 this.id=id;
 this.names = names;
 this.salary = salary;
 }
 List<Employee> employees = new
ArrayList<Employee>();
 @Override
 public void add(Employee employee) {
 employees.add(employee);
 }
 @Override
 public Employee getChild(int x) {
 return employees.get(x);
 }
 @Override
 public void remove(Employee employee) {
 employees.remove(employee);
 }
 @Override
 public int getId() {
 return id;
 }
 @Override
 public String getNames() {
 return names;
 }
 @Override
 public double getSalary() {
 return salary;
 }
 @Override
 public void print() {
 System.out.println("================");
 System.out.println("Id ="+getId());
 System.out.println("Names ="+getNames());
 System.out.println("Salary ="+getSalary());
 System.out.println("=================");

 Iterator<Employee> it = employees.iterator();

 while(it.hasNext()) {
 Employee employee = it.next();
 employee.print();
 }
 }
}// End of BankManager class.

Appraisal ◾ 281

• Step 3: Create a Cashier class that acts as a leaf and implements the
Employee interface.

File: Cashier.java

public class Cashier implements Employee{
 /*
 In this class, some methods do not apply to
cashiers because
 it is leaf node.
 */
 private int id;
 private String names;
 private double salary;
 public Cashier(int id,String names,double
salary) {
 this.id=id;
 this.names = names;
 this.salary = salary;
 }
 @Override
 public void add(Employee employee) {
 //this is a leaf node, so this method is
not applicable to this class.
 }
 @Override
 public Employee getChild(int x) {
 //this is a leaf node, so this method is
not applicable to this class.
 return null;
 }
 @Override
 public int getId() {
 // TODO Auto-generated the method stub
 return id;
 }
 @Override
 public String getNames() {
 return names;
 }
 @Override
 public double getSalary() {
 return salary;
 }
 @Override
 public void print() {
 System.out.println("===================");
 System.out.println("Id ="+getId());

282 ◾ Appraisal

• Step 4: Create an Accountant class, which will be considered as a leaf
and will implement the Employee interface.

File: Accountant.java

public class Accountant implements Employee{
 /*
 In this class, some methods are not applicable
to cashiers because
 it is a leaf node.
 */
 private int id;
 private String names;
 private double salary;
 public Accountant(int id,String names,double
salary) {
 this.id=id;
 this.names = names;
 this.salary = salary;
 }
 @Override
 public void add(Employee employee) {
 //this is a leaf node, so this method is
not applicable to this class.
 }
 @Override
 public Employee getChild(int i) {
 //this is a leaf node, so this method is
not applicable to this class.
 return null;
 }

 System.out.println("Names ="+getNames());
 System.out.println("Salary
="+getSalary());
 System.out.println("===================");
 }
 @Override
 public void remove(Employee employee) {
 //this is a leaf node, so this method is
not applicable to this class.
 }
}

Appraisal ◾ 283

• Step 5: Create a CompositePatternDemo class that will be used as a
Client and will implement the Employee interface.

File: CompositePatternDemo.java

 @Override
 public int getId() {
 // TODO Auto-generated the method stub
 return id;
 }
 @Override
 public String getNames() {
 return names;
 }
 @Override
 public double getSalary() {
 return salary;
 }
 @Override
 public void print() {
 System.out.println("================");
 System.out.println("Id ="+getId());
 System.out.println("Names ="+getNames());
 System.out.println("Salary ="+getSalary());
 System.out.println("=================");
 }
 @Override
 public void remove(Employee employee) {
 //this is a leaf node, so this method is
not applicable to this class.
 }
 }

public class CompositePatternDemo {
 public static void main(String args[]){
 Employee emp1=new Cashier(201,"Rohan Kumar",
23000.0);
 Employee emp2=new Cashier(202,"Sohan Sharma",
29000.0);
 Employee emp3=new Accountant(203,"Reema
Malhotra", 35000.0);
 Employee manager1=new
BankManager(200,"Pshwani Kehsav",120000.0);

284 ◾ Appraisal

Composite Pattern in C#

The Composite Design Pattern composes elements into tree structures to
describe part-whole hierarchies. This pattern allows clients to handle indi-
vidual objects and object compositions equally.

Participants
This pattern’s classes and objects are as follows:

1. Component (DrawingElement):

• Defines the interface for the composition’s objects

• As appropriate, implements default behavior for the interface
shared by all classes.

• Specifies an interface for controlling and accessing its child
components.

• (Optional) specifies and implements an interface for accessing a
component’s parent in the recursive structure.

2. Leaf (PrimitiveElement):

• Represents the composition’s leaf objects. A leaf has no offspring.

• Describes the behavior of the composition’s basic objects.

3. Composite (CompositeElement):

• Describes the behavior of components with children.

• Keeps child components.

In the Component interface, it implements child-related operations.

4. Client (CompositeApp):

• Manipulates composition items using the Component interface.

 manager1.add(emp1);
 manager1.add(emp2);
 manager1.add(emp3);
 manager1.print();
 }
}

Appraisal ◾ 285

C# Structural Code

This structural code exemplifies the Composite pattern, which enables
the development of a tree structure in which individual nodes are
accessible consistently regardless of whether they are leaf nodes or branch
(composite) nodes.

using System;
using System.Collections.Generic;

namespace Composite.Structural
{
 /// <summary> Composite Design Pattern </summary>

 public class Program
 {
 public static void Main(string[] args)
 {
 // Create tree structure

 Composite root = new Composite("root");
 root.Add(new Leaf("Leaf X"));
 root.Add(new Leaf("Leaf Y"));

 Composite comp = new Composite("Composite A");
 comp.Add(new Leaf("Leaf AX"));
 comp.Add(new Leaf("Leaf AY"));

 root.Add(comp);
 root.Add(new Leaf("Leaf Z"));

 // Add and remove leaf

 Leaf leaf = new Leaf("Leaf E");
 root.Add(leaf);
 root.Remove(leaf);

 // Recursively display tree

 root.Display(1);

 // Wait for the user

 Console.ReadKey();
 }
 }

286 ◾ Appraisal

 /// <summary> The 'Component' abstract class
 /// </summary>

 public abstract class Component
 {
 protected string names;

 // Constructor

 public Component(string name)
 {
 this.names = names;
 }

 public abstract void Add(Component c);
 public abstract void Remove(Component c);
 public abstract void Display(int depth);
 }

 /// <summary> The 'Composite' class
 /// </summary>

 public class Composite : Component
 {
 List<Component> children = new List<Component>();

 // Constructor

 public Composite(string names)
 : base(names)
 {
 }

 public override void Add(Component component)
 {
 children.Add(component);
 }

 public override void Remove(Component component)
 {
 children.Remove(component);
 }

 public override void Display(int depth)
 {
 Console.WriteLine(new String('-', depth) + names);

 // Recursively display child nodes

Appraisal ◾ 287

Real-World C# Code

This real-world code displays the Composite pattern, which is used to
construct a graphical tree structure composed of primitive nodes (lines,
circles, and so on) and composite nodes (groups of drawing elements that
make up more complex elements).

using System;
using System.Collections.Generic;

 foreach (Component component in children)
 {
 component.Display(depth + 2);
 }
 }
 }

 /// <summary> The 'Leaf' class
 /// </summary>

 public class Leaf : Component
 {
 // Constructor

 public Leaf(string name)
 : base(name)
 {
 }

 public override void Add(Component c)
 {
 Console.WriteLine("Cannot add to leaf");
 }

 public override void Remove(Component c)
 {
 Console.WriteLine("Cannot remove from leaf");
 }

 public override void Display(int depth)
 {
 Console.WriteLine(new String('-', depth) + names);
 }
 }
}

288 ◾ Appraisal

namespace Composite.RealWorld
{
 /// <summary> Composite Design Pattern
 /// </summary>

 public class Program
 {
 public static void Main(string[] args)
 {
 // Create tree structure

 CompositeElement root = new
CompositeElement("Picture");
 root.Add(new PrimitiveElement("Red-Line"));
 root.Add(new PrimitiveElement("Blue-Circle"));
 root.Add(new PrimitiveElement("Green-Box"));

 // Create branch

 CompositeElement comp = new
CompositeElement("Two-Circles");
 comp.Add(new PrimitiveElement("Black-Circle"));
 comp.Add(new PrimitiveElement("White-Circle"));
 root.Add(comp);

 // Add and remove the PrimitiveElement

 PrimitiveElement pe = new
PrimitiveElement("Yellow-Line");
 root.Add(pe);
 root.Remove(pe);

 // Recursively display the nodes

 root.Display(1);

 // Wait for the user

 Console.ReadKey();
 }
 }

 /// <summary> 'Component' Treenode
 /// </summary>

 public abstract class DrawingElement
 {
 protected string names;

Appraisal ◾ 289

 // Constructor

 public DrawingElement(string names)
 {
 this.names = names;
 }

 public abstract void Add(DrawingElement d);
 public abstract void Remove(DrawingElement d);
 public abstract void Display(int indent);
 }

 /// <summary> The 'Leaf' class
 /// </summary>

 public class PrimitiveElement : DrawingElement
 {
 // Constructor

 public PrimitiveElement(string names)
 : base(names)
 {
 }

 public override void Add(DrawingElement c)
 {
 Console.WriteLine(
 "Cannot add to a PrimitiveElement");
 }

 public override void Remove(DrawingElement c)
 {
 Console.WriteLine(
 "Cannot remove from PrimitiveElement");
 }

 public override void Display(int indent)
 {
 Console.WriteLine(
 new String('-', indent) + " " + names);
 }
 }

 /// <summary> 'Composite' class
 /// </summary>

 public class CompositeElement : DrawingElement
 {

290 ◾ Appraisal

DECORATOR PATTERN
The Decorator Pattern is a Structural Design Pattern that allows us to
dynamically attach new behaviors to objects without affecting their imple-
mentation by enclosing these objects within the wrapper objects that con-
tain the behaviors.

Because of its built-in functionality, the Decorator Pattern
is significantly easier to implement in Python. It is not equal to
Inheritance since the new functionality is added to that specific object
rather than the entire subclass.

 List<DrawingElement> elements = new
List<DrawingElement>();

 // Constructor

 public CompositeElement(string names)
 : base(names)
 {
 }

 public override void Add(DrawingElement d)
 {
 elements.Add(d);
 }

 public override void Remove(DrawingElement d)
 {
 elements.Remove(d);
 }

 public override void Display(int indent)
 {
 Console.WriteLine(new String('-', indent) +
 "+ " + names);

 // Display the each child element on this node

 foreach (DrawingElement d in elements)
 {
 d.Display(indent + 2);
 }
 }
 }
}

Appraisal ◾ 291

The Problem without Using Decorator Pattern

Imagine we’re working with a formatting tool that includes capabilities
like bolding and underlining text. However, after some time, our format-
ting tools were well-known within the intended audience. We learned from
feedback that our audience desires additional capabilities in the program,
such as the ability to make text Italic and many other features.

Does it seem simple? Because we must adhere to the Single Responsibility
Principle, it is not a simple process to implement this or modify our classes
to add new features without disrupting the current client code.

Decorator Pattern Solution

Let’s look at the answer we have to prevent such situations. At first, we
just had WrittenText, but we must add filters such as BOLD, ITALIC,
and UNDERLINE. As a result, we’ll create distinct wrapper classes for
each function, such as BoldWrapperClass, ItalicWrapperClass, and
UnderlineWrapperClass.

class WrittenText:

 """Represents Written text """

 def __init__(self, text):
 self._text = text

 def render(self):
 return self._text

class UnderlineWrapper(WrittenText):

 """Wraps tag in <u>"""

 def __init__(self, wrapped):
 self._wrapped = wrapped

 def render(self):
 return "<u>{}</u>".format(self._wrapped.render())

class ItalicWrapper(WrittenText):

 """Wraps tag in <i>"""

 def __init__(self, wrapped):
 self._wrapped = wrapped

292 ◾ Appraisal

Advantages

• Single Responsibility Principle: Using the Decorator approach, it is
simple to separate a monolithic class that implements several differ-
ent versions of behavior into many classes.

• Runtime Responsibilities: At runtime, we may simply add or remove
responsibilities from an object.

• Subclassing: Subclassing is an alternative to the decorator tech-
nique. Subclassing adds functionality at compile-time, affecting all
instances of the original class; decorating might offer additional
behavior for particular objects during runtime.

Disadvantages

• Removing Wrapper: It is quite difficult to remove a specific wrapper
from the wrapper’s stack.

• Complicated Decorators: Having decorators maintain track of
other decorators may be difficult since looking back into numerous

 def render(self):
 return "<i>{}</i>".format(self._wrapped.render())

class BoldWrapper(WrittenText):

 """Wraps tag in """

 def __init__(self, wrapped):
 self._wrapped = wrapped

 def render(self):
 return "{}".format(self._wrapped.render())

""" main-method """

if __name__ == '__main__':

 before_pfp = WrittenText("PeeksforPeeks")
 after_pfp = ItalicWrapper(UnderlineWrapper(BoldWrapper(
before_pfp)))

 print("before :", before_pfp.render())
 print("after :", after_pfp.render())

Appraisal ◾ 293

levels of the decorator chain begins to stretch the decorator pattern
beyond its real goal.

• Ugly Configuration: A large number of layers’ code may cause the
configurations to be ugly.

Applicability

• Incapable Inheritance: When it is not feasible to extend the func-
tionality of an object using Inheritance, the Decorator technique is
used.

• Runtime Assignment: One of the most essential features of the
Decorator Pattern is the ability to give varied and unique behaviors
to the object during runtime.

Decorator Pattern Usage

• When we want to assign responsibilities to objects openly and
dynamically without affecting other objects.

• When we want to assign responsibilities to an object that we may
wish to modify in the future.

• Subclassing is no longer a viable method of extending functionality.

Implementation of Decorator Pattern in Java

• Step 1: Develop a Food interface.

• Step 2: Develop a VegFood class that implements the Food interface
and overrides all of its functions.

File: VegFood.java

public class VegFood implements Food {
 public String prepareFood(){
 return "Veg Food";
 }

public interface Food {
 public String prepareFood();
 public double foodPrices();
}// End of Food interface.

294 ◾ Appraisal

• Step 3: Create a FoodDecorator abstract class that implements the
Food interface, overrides all of its methods and can decorate addi-
tional foods.

File: FoodDecorator.java

• Step 4: Develop a NonVegFood concrete class that extends the
FoodDecorator class and overrides all of its methods.

File: NonVegFood.java

 public double foodPrices(){
 return 60.0;
 }
}

public class NonVegFood extends FoodDecorator{
 public NonVegFood(Food newFood) {
 super(newFood);
 }
 public String prepareFood(){
 return super.prepareFood() +" With the Roasted
Chiken and Chiken Curry ";
 }
 public double foodPrices() {
 return super.foodPrices()+160.0;
 }
}

public abstract class FoodDecorator implements Food{
 private Food newFood;
 public FoodDecorator(Food newFood) {
 this.newFood=newFood;
 }
 @Override
 public String prepareFood(){
 return newFood.prepareFood();
 }
 public double foodPrices(){
 return newFood.foodPrices();
 }
}

Appraisal ◾ 295

• Step 5: Create a concrete class called ChineseFood that extends the
FoodDecorator class and overrides all of its functions.

File: ChineeseFood.java

• Step 6: Create a DecoratorPatternCustomer class that will utilize
the Food interface to determine what sort of food the client wants
(Decorates).

File: DecoratorPatternCustomer.java

public class ChineeseFood extends FoodDecorator{
 public ChineeseFood(Food newFood) {
 super(newFood);
 }
 public String prepareFood(){
 return super.prepareFood() +" With the Fried
Rice and Manchurian ";
 }
 public double foodPrices() {
 return super.foodPrices()+75.0;
 }
 }

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
public class DecoratorPatternCustomer {
 private static int choice;
 public static void main(String args[]) throws
NumberFormatException, IOException {
 do{
 System.out.print("====== Food-Menu ====== \n");
 System.out.print(" 1. Vegetarian
Food. \n");
 System.out.print(" 2. Non-Vegetarian
Food.\n");
 System.out.print(" 3. Chineese
Food. \n");
 System.out.print(" 4. Exit
\n");
 System.out.print("Enter our choice: ");
 BufferedReader br=new BufferedReader(new
InputStreamReader(System.in));

296 ◾ Appraisal

Decorator Pattern in C#

The Decorator Design Pattern dynamically assigns new responsibilities to
an object. This pattern provides a more flexible option for adding func-
tionality than subclassing.

 choice=Integer.parseInt(br.readLine());
 switch (choice) {
 case 1:{
 VegFood vf=new VegFood();
 System.out.println(vf.prepareFood());
 System.out.println(vf.foodPrices());
 }
 break;

 case 2:{
 Food f1=new NonVegFood((Food) new
VegFood());
 System.out.println(f1.
prepareFood());
 System.out.println(f1.foodPrices());
 }
 break;
 case 3:{
 Food f2=new ChineeseFood((Food) new
VegFood());
 System.out.println(f2.
prepareFood());
 System.out.println(
f2.foodPrices());
 }
 break;

 default:{
 System.out.println("Other than these no
food is available");
 }
 return;
 }//end of the switch

}while(choice!=4);
 }
}

Appraisal ◾ 297

Participants
This pattern’s classes and objects are as follows:

1. Component (LibraryItem):

• Specifies the interface for objects that can have responsibilities
dynamically assigned to them.

2. ConcreteComponent (Book, Video):

• Identifies an object to which extra responsibilities can be assigned

3. Decorator (Decorator):

• Holds a reference to a Component object and specifies an inter-
face that adheres to the interface of the Component.

4. ConcreteDecorator (Borrowable):

• Responsibilities are added to the component.

C# Structural Code

This structured code showcases the Decorator pattern, which adds more
functionality to an existing object dynamically.

using System;

namespace Decorator.Structural
{
 /// <summary> Decorator Design Pattern
 /// </summary>

 public class Program
 {
 public static void Main(string[] args)
 {
 // Create the ConcreteComponent and two
Decorators

 ConcreteComponent c1 = new ConcreteComponent();
 ConcreteDecoratorA d1 = new ConcreteDecoratorX();
 ConcreteDecoratorB d2 = new ConcreteDecoratorY();

 // Link-decorators

 d1.SetComponent(c1);
 d2.SetComponent(d1);

298 ◾ Appraisal

 d2.Operation();

 // Wait for the user

 Console.ReadKey();
 }
 }

 /// <summary> The 'Component' abstract class
 /// </summary>

 public abstract class Component
 {
 public abstract void Operation();
 }

 /// <summary> The 'ConcreteComponent' class
 /// </summary>

 public class ConcreteComponent : Component
 {
 public override void Operation()
 {
 Console.WriteLine("ConcreteComponent.
Operation()");
 }
 }

 /// <summary>
 /// The 'Decorator' abstract class
 /// </summary>

 public abstract class Decorator : Component
 {
 protected Component component;

 public void SetComponent(Component component)
 {
 this.component = component;
 }

 public override void Operation()
 {
 if (component != null)
 {
 component.Operation();
 }
 }
 }

Appraisal ◾ 299

Real-World C# Code

This real-world code exemplifies the Decorator Pattern, which adds
“borrowable” functionality to existing library objects (books and
videos).

 /// <summary> The 'ConcreteDecoratorX' class
 /// </summary>

 public class ConcreteDecoratorX : Decorator
 {
 public override void Operation()
 {
 base.Operation();
 Console.WriteLine("ConcreteDecoratorX.
Operation()");
 }
 }

 /// <summary> The 'ConcreteDecoratorY' class
 /// </summary>

 public class ConcreteDecoratorY : Decorator
 {
 public override void Operation()
 {
 base.Operation();
 AddedBehavior();
 Console.WriteLine("ConcreteDecoratorY
.Operation()");
 }

 void AddedBehavior()
 {
 }
 }
}

using System;
using System.Collections.Generic;

namespace Decorator.RealWorld
{

300 ◾ Appraisal

 /// <summary> Decorator Design Pattern
 /// </summary>

 public class Program
 {
 public static void Main(string[] args)
 {
 // Create-book

 Book book = new Book("Lorley", "Inside.NET",
20);
 book.Display();

 // Create-video

 Video video = new Video("Pielberg", "Laws",
24, 82);
 video.Display();

 // Make the video borrowable, then borrow and
display

 Console.WriteLine("\nMaking the video
borrowable:");

 Borrowable borrowvideo = new Borrowable(video);
 borrowvideo.BorrowItem("Customer #1");
 borrowvideo.BorrowItem("Customer #2");

 borrowvideo.Display();

 // Wait for the user

 Console.ReadKey();
 }
 }
 /// <summary> The 'Component' abstract class
 /// </summary>

 public abstract class LibraryItem
 {
 private int numCopies;

 public int NumCopies
 {
 get { return numCopies; }
 set { numCopies = value; }
 }

Appraisal ◾ 301

 public abstract void Display();
 }

 /// <summary> The 'ConcreteComponent' class
 /// </summary>

 public class Book : LibraryItem
 {
 private string author;
 private string title;

 // Constructor

 public Book(string author, string title, int
numCopies)
 {
 this.author = author;
 this.title = title;
 this.NumCopies = numCopies;
 }

 public override void Display()
 {
 Console.WriteLine("\nBook --- ");
 Console.WriteLine(" The Author is: {0}",
author);
 Console.WriteLine(" The Title is: {0}", title);
 Console.WriteLine(" # The Copies is: {0}",
NumCopies);
 }
 }

 /// <summary> The 'ConcreteComponent' class
 /// </summary>

 public class Video : LibraryItem
 {
 private string director;
 private string title;
 private int playTime;

 // Constructor

 public Video(string director, string title, int
numCopies, int playTime)
 {
 this.director = director;
 this.title = title;

302 ◾ Appraisal

 this.NumCopies = numCopies;
 this.playTime = playTime;
 }

 public override void Display()
 {
 Console.WriteLine("\nVideo --- ");
 Console.WriteLine(" The Director is: {0}",
director);
 Console.WriteLine(" The Title is: {0}", title);
 Console.WriteLine(" # The Copies is: {0}",
NumCopies);
 Console.WriteLine(" The Playtime is: {0}\n",
playTime);
 }
 }

 /// <summary> The 'Decorator' abstract class
 /// </summary>

 public abstract class Decorator : LibraryItem
 {
 protected LibraryItem libraryItem;

 // Constructor

 public Decorator(LibraryItem libraryItem)
 {
 this.libraryItem = libraryItem;
 }

 public override void Display()
 {
 libraryItem.Display();
 }
 }

 /// <summary> The 'ConcreteDecorator' class
 /// </summary>

 public class Borrowable : Decorator
 {
 protected readonly List<string> borrowers = new
List<string>();

 // Constructor

 public Borrowable(LibraryItem libraryItem)

Appraisal ◾ 303

FLYWEIGHT PATTERN
The Flyweight Pattern is a Structural Design Pattern that focuses on
reducing the number of objects needed by the application at run-time. It
essentially produces a Flyweight object that is shared by many contexts. It
is designed in such a way that it is impossible to tell the difference between
an item and a Flyweight Object. The fact that Flyweight objects are immu-
table is a significant feature. This implies that they cannot alter after they
have been built.

To implement the Flyweight Pattern in Python, we utilize a Dictionary,
which maintains references to previously constructed objects, each of
which is connected with a key.

Why Are We Concerned with the Number of Objects in Our Program?

A smaller number of objects minimizes memory utilization and keeps us
safe from memory-related issues.

 : base(libraryItem)
 {
 }

 public void BorrowItem(string name)
 {
 borrowers.Add(name);
 libraryItem.NumCopies--;
 }

 public void ReturnItem(string name)
 {
 borrowers.Remove(name);
 libraryItem.NumCopies++;
 }

 public override void Display()
 {
 base.Display();

 foreach (string borrower in borrowers)
 {
 Console.WriteLine(" borrower: " + borrower);
 }
 }
 }
}

304 ◾ Appraisal

Despite the fact that generating an object in Python is rapid, we may
lower the execution time of our application by sharing objects.

The Problem without Using Flyweight Pattern

Assume we are a game developer who enjoy racing games and want to cre-
ate a racing game for ourselves and a buddy. We made one and began play-
ing the game since we are excellent game creators. Then we gave the game
to our buddies, although they didn’t like it since the game kept crashing
every few minutes.

But why is that? (If we believe we’re a Pro Game Developer, guess why.)
After many hours of troubleshooting, you discovered that the problem is a
shortage of RAM on our friend’s machine. Because our system is consider-
ably more powerful than our friend’s system, the game ran smoothly on
our system but not on our friend’s.

Solution Based on the Flyweight Pattern

So, as a developer, what will we do to boost performance? (Obviously! We’re
not planning to boost my RAM). The underlying issue is with automo-
bile objects since each car is represented by individual objects that include
a wealth of data like its color, size, seats, maximum speed, and so on.
When our RAM is full and we are unable to add any additional objects that
are now necessary, our game will crash. To prevent such circumstances
in applications, it is the developer’s responsibility to adopt the Flyweight
Pattern, which enables us to fit more objects into the available RAM by
sharing common sections of the objects.

The Flyweight Pattern is used in the following code:

class ComplexCars(object):

 """Separate class for the Complex Cars"""

 def __init__(self):

 pass

 def cars(self, car_name):

 return "ComplexPattern[% s]" % (car_name)

class CarFamilies(object):

Appraisal ◾ 305

Advantages

• Reduced RAM Usage: When we have a lot of identical objects in our
application, it is always advisable to utilize the Flyweight Pattern to
save a lot of RAM space.

 """dictionary to store ids of car"""

 car_family = {}

 def __new__(cls, name, car_family_id):
 try:
 id = cls.car_family[car_family_id]
 except KeyError:
 id = object.__new__(cls)
 cls.car_family[car_family_id] = id
 return id

 def set_car_info(self, car_info):

 """set car information"""

 cg = ComplexCars()
 self.car_info = cg.cars(car_info)

 def get_car_info(self):

 """return car information"""

 return (self.car_info)

if __name__ == '__main__':
 car_data = (('a', 1, 'Audi23'), ('a', 2, 'Ferrari32'),
('b', 1, 'Audi54'))
 car_family_objects = []
 for c in car_data:
 obj = CarFamilies(c[0], c[1])
 obj.set_car_info(c[2])
 car_family_objects.append(obj)

 """similar id's says that they are same objects """

 for c in car_family_objects:
 print("id = " + str(id(c)))
 print(c.get_car_info())

306 ◾ Appraisal

• Improved Data Caching: When a client or user requires a fast
response time, it is usually preferable to employ the Flyweight Pattern
since it aids in data caching.

• Improved Performance: Because we are employing fewer heavy
items, our performance will eventually improve.

Disadvantages

• Encapsulation Breaking: When we attempt to transfer the state out-
side the object, we break encapsulation and may become less efficient
than retaining the state within the object.

• Flyweight Pattern is difficult to use depending on the language we
use; it is simple to use in languages like Python and Java where all
object variables are references, but it is common in languages like
C and C++ where objects can be allocated as local variables on the
stack and destroyed as a result of programmer action.

• Complicated Code: Using the Flyweight Pattern always increases
the complexity of the code for novice developers to grasp.

Applicability

• To Reduce the Number of Objects: When our program has a large
number of heavy-weight objects, we apply the Flyweight approach to
eliminate excessive memory usage.

• Independent Object Applications: When our program is not depen-
dent on the object produced, we may utilize this way to save a lot of
computer space.

• Reduced Project Costs: When it is necessary to lower the cost of
a project in terms of space and time complexity, the Flyweight
approach is always favored.

Flyweight Pattern Usage

• When a program employs a large number of objects.

• When the cost of storage is significant due to the number of
objects.

• When the program does not rely on the identification of the
object.

Appraisal ◾ 307

Implementation of Flyweight Pattern in Java

• Step 1: Design an interface.
Filename: Shape.java

• Step 2: Make a concrete class that implements the same interface.
Filename: Circle.java

public interface Shape {
 void draw();
 }

public class Circle implements Shape {
 private String color;
 private int c;
 private int d;
 private int radius;

 public Circle(String color){
 this.color = color;
 }

 public void setX(int c) {
 this.c = c;
 }

 public void setY(int d) {
 this.y = d;
 }

 public void setRadius(int radius) {
 this.radius = radius;
 }

 @Override
 public void draw() {
 System.out.println("Circle: Draw() [Color : " +
color + ", c : " + c + ", d :" + d + ", radius :" +
radius);
 }
 }

308 ◾ Appraisal

• Step 3: Create a factory to produce concrete class objects depending
on the information provided.

Filename: ShapeFactory.java

• Step 4: Invoke the factory to obtain an object of a concrete class by
providing details such as color.

Filename: FlyweightPatternDemo.java

import java.util.HashMap;

public class ShapeFactory {

 // Uncomment compiler directive line and javac
*.java will compile properly.
 // @SuppressWarnings("unchecked")
 private static final HashMap circleMap = new
HashMap();

 public static Shape getCircle(String color) {
 Circle circle = (Circle)circleMap.get(color);

 if(circle == null) {
 circle = new Circle(color);
 circleMap.put(color, circle);
 System.out.println("Creating the circle of
color : " + color);
 }
 return circle;
 }
}

public class FlyweightPatternDemo {
 private static final String colors[] = { "Pink",
"Grey", "Red", "Blue", "Black" };
 public static void main(String[] args) {

 for(int x=0; x < 20; ++x) {
 Circle circle = (Circle)ShapeFactory.
getCircle(getRandomColor());
 circle.setX(getRandomX());
 circle.setY(getRandomY());
 circle.setRadius(100);
 circle.draw();
 }
 }

Appraisal ◾ 309

Flyweight Pattern in C#

The Flyweight Design Pattern makes effective use of sharing to accommo-
date a large number of fine-grained objects.

Participants
This pattern’s classes and objects are as follows:

1. Flyweight (Character):

• Defines an interface for flyweights to receive and operate in an
extrinsic state.

2. ConcreteFlyweight (CharacterA, CharacterB, . . ., CharacterZ):

• Implements the Flyweight interface and, if applicable, adds stor-
age for the intrinsic state. A ConcreteFlyweight object must be able
to be shared. Any state it stores must intrinsic, that seems to be, it
must be independent of the ConcreteFlyweight object’s context.

3. UnsharedConcreteFlyweight (not used):

• It is not necessary to share all Flyweight categories. The Flyweight
interface allows for sharing but does not enforce it. It is common for
UnsharedConcreteFlyweight objects to have ConcreteFlyweight
objects as children at some level in the flyweight object structure
(as the Row and Column classes have).

4. FlyweightFactory (CharacterFactory):

• Builds and manages flyweight objects ensure correct flyweight
sharing When a client requests a flyweight, the FlyweightFactory

 private static String getRandomColor() {
 return colors[(int)(Math.random()*colors.
length)];
 }
 private static int getRandomX() {
 return (int)(Math.random()*100);
 }
 private static int getRandomY() {
 return (int)(Math.random()*100);
 }
 }

310 ◾ Appraisal

object either assets an existing instance or builds one if none
already exists.

5. Client (FlyweightApp):

• Keeps a reference to flyweight (s).

• Computes or saves the flyweight’s extrinsic state (s).

C# Structural Code

This structure code exemplifies the Flyweight pattern, in which a limited
number of objects are shared several times by various clients.

using System;
using System.Collections.Generic;

namespace Flyweight.Structural
{
 /// <summary> Flyweight Design Pattern
 /// </summary>

 public class Program
 {
 public static void Main(string[] args)
 {
 // Arbitrary extrinsic state

 int extrinsicstate = 24;

 FlyweightFactory factory = new
FlyweightFactory();

 // Work with different flyweight instances

 Flyweight fx = factory.GetFlyweight("A");
 fx.Operation(--extrinsicstate);

 Flyweight fy = factory.GetFlyweight("B");
 fy.Operation(--extrinsicstate);

 Flyweight fz = factory.GetFlyweight("C");
 fz.Operation(--extrinsicstate);

 UnsharedConcreteFlyweight fu = new
 UnsharedConcreteFlyweight();

Appraisal ◾ 311

 fu.Operation(--extrinsicstate);

 // Wait for the user

 Console.ReadKey();
 }
 }
 /// <summary> The 'FlyweightFactory' class
 /// </summary>

 public class FlyweightFactory
 {
 private Dictionary<string, Flyweight> flyweights {
get; set; } = new Dictionary<string, Flyweight>();

 // Constructor

 public FlyweightFactory()
 {
 flyweights.Add("A", new ConcreteFlyweight());
 flyweights.Add("B", new ConcreteFlyweight());
 flyweights.Add("C", new ConcreteFlyweight());
 }

 public Flyweight GetFlyweight(string key)
 {
 return ((Flyweight)flyweights[key]);
 }
 }

 /// <summary> The 'Flyweight' abstract class
 /// </summary>

 public abstract class Flyweight
 {
 public abstract void Operation(int extrinsicstate);
 }

 /// <summary> The 'ConcreteFlyweight' class
 /// </summary>

 public class ConcreteFlyweight : Flyweight
 {
 public override void Operation(int extrinsicstate)
 {
 Console.WriteLine("ConcreteFlyweight: " +
extrinsicstate);
 }
 }

312 ◾ Appraisal

Real-World C# Code

This real-world code exemplifies the Flyweight Pattern, in which a limited
number of Character objects are shared several times by a document with
possibly many characters.

using System;
using System.Collections.Generic;

namespace Flyweight.RealWorld
{
 /// <summary> Flyweight Design Pattern
 /// </summary>

 public class Program
 {
 public static void Main(string[] args)
 {
 // Build document with the text

 string document = "AAZZBBZB";
 char[] chars = document.ToCharArray();

 CharacterFactory factory = new
CharacterFactory();

 // extrinsic-state

 int pointSize = 12;

 // For each character use a flyweight object

 /// <summary> The 'UnsharedConcreteFlyweight' class
 /// </summary>

 public class UnsharedConcreteFlyweight : Flyweight
 {
 public override void Operation(int extrinsicstate)
 {
 Console.WriteLine("UnsharedConcreteFlyweight: " +
 extrinsicstate);
 }
 }
}

Appraisal ◾ 313

 foreach (char c1 in chars)
 {
 pointSize++;
 Character character = factory.
GetCharacter(c1);
 character.Display(pointSize);
 }

 // Wait for the user

 Console.ReadKey();
 }
 }

 /// <summary> The 'FlyweightFactory' class
 /// </summary>

 public class CharacterFactory
 {
 private Dictionary<char, Character> characters =
new Dictionary<char, Character>();

 public Character GetCharacter(char key)
 {
 // Uses the "lazy initialization"

 Character character = null;

 if (characters.ContainsKey(key))
 {
 character = characters[key];
 }
 else
 {
 switch (key)
 {
 case 'A': character = new CharacterA();
break;
 case 'B': character = new CharacterB();
break;
 //...
 case 'Z': character = new CharacterZ();
break;
 }
 characters.Add(key, character);
 }
 return character;
 }
 }

314 ◾ Appraisal

 /// <summary> The 'Flyweight' abstract class
 /// </summary>

 public abstract class Character
 {
 protected char symbol;
 protected int width;
 protected int height;
 protected int ascent;
 protected int descent;
 protected int pointSize;

 public abstract void Display(int pointSize);
 }

 /// <summary> A 'ConcreteFlyweight' class
 /// </summary>

 public class CharacterA : Character
 {
 // Constructor
 public CharacterA()
 {
 symbol = 'A';
 height = 120;
 width = 130;
 ascent = 80;
 descent = 0;
 }

 public override void Display(int pointSize)
 {
 this.pointSize = pointSize;
 Console.WriteLine(symbol +
 " (pointsize " + this.pointSize + ")");
 }
 }

 /// <summary> A 'ConcreteFlyweight' class
 /// </summary>

 public class CharacterB : Character
 {
 // Constructor

 public CharacterB()
 {
 symbol = 'B';
 height = 120;

Appraisal ◾ 315

CHAIN OF RESPONSIBILITY
The Chain of Responsibility Pattern is a Behavioral Design Pattern that is
the object-oriented counterpart of if… elif… elif… else that allows us to
dynamically rearrange the condition-action blocks at run-time. It enables

 width = 150;
 ascent = 82;
 descent = 0;
 }

 public override void Display(int pointSize)
 {
 this.pointSize = pointSize;
 Console.WriteLine(this.symbol +
 " (pointsize " + this.pointSize + ")");
 }

 }

 // ... C, D, E, etc.

 /// <summary>
 /// A 'ConcreteFlyweight' class
 /// </summary>

 public class CharacterZ : Character
 {
 // Constructor

 public CharacterZ()
 {
 symbol = 'Z';
 height = 120;
 width = 120;
 ascent = 78;
 descent = 0;
 }

 public override void Display(int pointSize)
 {
 this.pointSize = pointSize;
 Console.WriteLine(this.symbol +
 " (pointsize " + this.pointSize + ")");
 }
 }
}

316 ◾ Appraisal

us to route requests via the handler chain. The processing is simple; when-
ever a handler receives a request, it has two options: process it or transmit
it to the next handler in the chain.

This pattern attempts to decouple request senders from receivers by
allowing the request to pass through chained receivers until it is processed.

The Problem without Using the Chain of Responsibility Pattern

Assume we are creating a basic website that accepts input strings and
reports on various features of the strings, such as whether the string is a
palindrome. Is the string in upperCase? Is lowerCase a string? And several
other characteristics. After careful consideration, you conclude that these
tests for the input string should do in the order listed. As a result, the
developer is faced with creating an application that can pick which action
to take next at runtime.

Solution Using Chain of Responsibility Pattern

The Chain of Responsibility Pattern solves the difficulty above. It
generates a new Abstract handler to handle the sequential activi-
ties that must execute dynamically. For example, we may build four
handlers called FirstConcreteHandler, SecondConcreteHandler,
ThirdConcreteHandler, and Defaulthandler and call them successively
from the user class.

class AbstractHandler(object):

 """Parent class of all the concrete handlers"""

 def __init__(self, nxt):

 """change or increase local variable using nxt"""

 self._nxt = nxt

 def handle(self, request):

 """It calls the processRequest through given
request"""

 handled = self.processRequest(request)

 """case when it is not handled"""

Appraisal ◾ 317

 if not handled:
 self._nxt.handle(request)

 def processRequest(self, request):

 """throws a NotImplementedError"""

 raise NotImplementedError('First implement it !')

class FirstConcreteHandler(AbstractHandler):

 """Concrete Handler # 1: Child class of
AbstractHandler"""

 def processRequest(self, request):

 '''return True if the request is handled '''

 if 'a' < request <= 'e':
 print("This is {} handling the request '{}'".
format(self.__class__.__name__, request))
 return True

class SecondConcreteHandler(AbstractHandler):

 """Concrete Handler # 2: Child class of the
AbstractHandler"""

 def processRequest(self, request):

 '''return True if request is handled'''

 if 'e' < request <= 'l':
 print("This is {} handling request '{}'".
format(self.__class__.__name__, request))
 return True

class ThirdConcreteHandler(AbstractHandler):

 """Concrete Handler # 3: Child class of the
AbstractHandler"""

 def processRequest(self, request):

 '''return True if request is handled'''

 if 'l' < request <= 'z':

318 ◾ Appraisal

 print("This is {} handling request '{}'".
format(self.__class__.__name__, request))
 return True

class DefaultHandler(AbstractHandler):

 """Default Handler: child class from AbstractHandler"""

 def processRequest(self, request):

 """Gives message that th request is not handled and
returns true"""

 print("This is {} telling us that request '{}' has
no handler right now.".format(self.__class__.__name__,

request))
 return True

class User:

 """User-Class"""

 def __init__(self):

 """Provides sequence of handles for the users"""

 initial = None

 self.handler = FirstConcreteHandler(SecondConcreteH
andler(ThirdConcreteHandler(DefaultHandler(initial))))

 def agent(self, user_request):

 """Iterates over each request and sends them to the
specific handles"""

 for request in user_request:
 self.handler.handle(request)

"""main-method"""

if __name__ == "__main__":

 """Create client object"""
 user = User()

 """Create requests to process"""

Appraisal ◾ 319

Advantages

• Single Responsibility Principle: It is simple to separate the classes
that initiate operations from the classes that conduct operations
here.

• The open/closed approach states that we may add new code classes
without disrupting current client code.

• Increases Flexibility: As responsibilities are assigned to objects, the
code becomes more flexible.

Disadvantages

• Uncertain about the Request: This pattern provides no guarantee
that the item will be received or not.

• Spotting Characteristics: Because of debugging, seeing operation
characteristics becomes tough.

• System Performance Depreciation: It may have an impact on sys-
tem performance owing to constant cycle calls.

Applicability

• Processing many handlers in the following order: Because linking
is possible in any sequence, the Chain of Responsibility Pattern is
very useful when it is necessary to process numerous handlers in a
certain order.

• Requests for Decoupling: This pattern is often used when you wish
to separate the sender and recipient of a request.

• Unknown Handlers: When you don’t want to define handlers in the
code, the Chain of Responsibility is always chosen.

 string = "GeeksforGeeks"
 requests = list(string)

 """Send requests one by one, to handlers as per the
sequence of handlers defined in the Client class"""
 user.agent(requests)

320 ◾ Appraisal

Usage of the Chain of Responsibility Pattern

It is used as follows:

• When there are many objects that can handle a request and the han-
dler is uncertain.

• When the group of objects capable of handling the request must be
defined dynamically.

Java Implementation

• Step 1: Create an abstract class called Logger.

• Step 2: Create ConsoleBasedLogger class
File: ConsoleBasedLogger.java

public class ConsoleBasedLogger extends Logger {
 public ConsoleBasedLogger(int levels) {
 this.levels=levels;
 }

public abstract class Logger {
 public static int OUTPUTINFO=1;
 public static int ERRORINFO=2;
 public static int DEBUGINFO=3;
 protected int levels;
 protected Logger nextLevelLogger;
 public void setNextLevelLogger(Logger
nextLevelLogger) {
 this.nextLevelLogger = nextLevelLogger;
 }
 public void logMessage(int levels, String msg)
{
 if(this.levels<=levels){
 displayLogInfo(msg);
 }
 if (nextLevelLogger!=null) {
 nextLevelLogger.logMessage(levels, msg);
 }
 }
 protected abstract void displayLogInfo
(String msg);
}

Appraisal ◾ 321

• Step 3: Create a class called DebugBasedLogger.
File: DebugBasedLogger.java

• Step 4: Create a class called ErrorBasedLogger.
File: ErrorBasedLogger.java

• Step 5: Create a class called ChainOfResponsibilityClient.
File: ChainofResponsibilityClient.java

 @Override
 protected void displayLogInfo(String msg) {
 System.out.println("CONSOLE-LOGGER INFO:
"+msg);
 }
}

public class ChainofResponsibilityClient {
 private static Logger doChaining(){
 Logger consoleLogger = new
ConsoleBasedLogger(Logger.OUTPUTINFO);

public class ErrorBasedLogger extends Logger {
 public ErrorBasedLogger(int levels) {
 this.levels=levels;
 }
 @Override
 protected void displayLogInfo(String msg) {
 System.out.println("ERROR-LOGGER INFO: "+msg);
 }
}// End of ErrorBasedLogger class.

public class DebugBasedLogger extends Logger {
 public DebugBasedLogger(int levels) {
 this.levels=levels;
 }
 @Override
 protected void displayLogInfo(String msg) {
 System.out.println("DEBUG-LOGGER INFO: "+msg);
 }
}// End of DebugBasedLogger class.

322 ◾ Appraisal

Chain of Responsibility Pattern in C#

By allowing many objects to handle a request, the Chain of Responsibility
Design Pattern avoids tying the sender of a request to its recipient. This
pattern connects the receiving objects and transmits the request down the
chain until it is handled by an object.

Participants
This pattern’s classes and objects are as follows:

1. Handler (Approver):

• Offers an interface for processing requests.

• Implements the successor link (optional).

2. ConcreteHandler (Director, VicePresident, President):

• Processes requests for which it is accountable.

• Can get access to its successor.

 Logger errorLogger = new
ErrorBasedLogger(Logger.ERRORINFO);
 consoleLogger.setNextLevelLogger(errorLog
ger);

 Logger debugLogger = new
DebugBasedLogger(Logger.DEBUGINFO);
 errorLogger.setNextLevelLogger(debugLogger);

 return consoleLogger;
 }
 public static void main(String args[]){
 Logger chainLogger= doChaining();

 chainLogger.logMessage(Logger.
OUTPUTINFO, "Enter sequence of values ");
 chainLogger.logMessage(Logger.ERRORINFO,
"Error is occured now");
 chainLogger.logMessage(Logger.DEBUGINFO,
"This was error now debugging is compeled");
 }
}

Appraisal ◾ 323

• If the ConcreteHandler is capable of handling the request, it does
so; otherwise, the request is sent to its successor.

3. Client (ChainApp):

• Sends a request to a ConcreteHandler object on the chain.

C# Structural Code

This structural code shows the Chain of Responsibility Pattern, in which
several connected objects (the Chain) can react to a request or pass it on to
the next item in the line.

using System;

namespace Chain.Structural
{
 /// <summary> Chain of Responsibility Design Pattern
 /// </summary>

 public class Program
 {
 public static void Main(string[] args)
 {
 // Setup Chain of Responsibility

 Handler h1 = new ConcreteHandler1();
 Handler h2 = new ConcreteHandler2();
 Handler h3 = new ConcreteHandler3();
 h1.SetSuccessor(h2);
 h2.SetSuccessor(h3);

 // Generate and process request

 int[] requests = { 12, 15, 19, 23, 19, 30, 29,
26 };

 foreach (int request in requests)
 {
 h1.HandleRequest(request);
 }

 // Wait for the user

 Console.ReadKey();
 }
 }

324 ◾ Appraisal

 /// <summary> The 'Handler' abstract class
 /// </summary>

 public abstract class Handler
 {
 protected Handler successor;

 public void SetSuccessor(Handler successor)
 {
 this.successor = successor;
 }

 public abstract void HandleRequest(int request);
 }

 /// <summary> The 'ConcreteHandler1' class
 /// </summary>

 public class ConcreteHandler1 : Handler
 {
 public override void HandleRequest(int request)
 {
 if (request >= 0 && request < 10)
 {
 Console.WriteLine("{0} handled
request {1}",
 this.GetType().Name, request);
 }
 else if (successor != null)
 {
 successor.HandleRequest(request);
 }
 }
 }

 /// <summary> The 'ConcreteHandler2' class
 /// </summary>

 public class ConcreteHandler2 : Handler
 {
 public override void HandleRequest(int request)
 {
 if (request >= 12 && request < 22)
 {
 Console.WriteLine("{0} handled
request {1}",
 this.GetType().Name, request);
 }

Appraisal ◾ 325

Real-World C# Code

This real-world code exemplifies the Chain of Responsibility Pattern, in
which various linked managers and executives can reply to a purchase
request or forward it to a superior. Each job can have its own set of regula-
tions that it must follow in order to approve instructions.

 else if (successor != null)
 {
 successor.HandleRequest(request);
 }
 }
 }

 /// <summary> The 'ConcreteHandler3' class
 /// </summary>

 public class ConcreteHandler3 : Handler
 {
 public override void HandleRequest(int request)
 {
 if (request >= 22 && request < 32)
 {
 Console.WriteLine("{0} handled
request {1}",
 this.GetType().Name, request);
 }
 else if (successor != null)
 {
 successor.HandleRequest(request);
 }
 }
 }
}

using System;

namespace Chain.RealWorld
{
 /// <summary> Chain of Responsibility Design Pattern
 /// </summary>

 public class Program
 {
 public static void Main(string[] args)

326 ◾ Appraisal

 {
 // Chain of Responsibility Setup

 Approver larry = new Director();
 Approver sam = new VicePresident();
 Approver tammy = new President();

 larry.SetSuccessor(sam);
 sam.SetSuccessor(tammy);

 // Generate and process the purchase requests

 Purchase p1 = new Purchase(2094, 380.00,
"Supplies");
 larry.ProcessRequest(p);

 p1 = new Purchase(2075, 42990.10, "Project X");
 larry.ProcessRequest(p);

 p1 = new Purchase(2026, 129100.00, "Project Y");
 larry.ProcessRequest(p);

 // Wait for the user

 Console.ReadKey();
 }
 }
 /// <summary> The 'Handler' abstract class
 /// </summary>

 public abstract class Approver
 {
 protected Approver successor;

 public void SetSuccessor(Approver successor)
 {
 this.successor = successor;
 }

 public abstract void ProcessRequest(Purchase
purchase);
 }

 /// <summary> The 'ConcreteHandler' class
 /// </summary>

 public class Director : Approver
 {

Appraisal ◾ 327

 public override void ProcessRequest(Purchase
purchase)
 {
 if (purchase.Amount < 11000.0)
 {
 Console.WriteLine("{0} approved request#
{1}",
 this.GetType().Name, purchase.Number);
 }
 else if (successor != null)
 {
 successor.ProcessRequest(purchase);
 }
 }
 }

 /// <summary> The 'ConcreteHandler' class
 /// </summary>

 public class VicePresident : Approver
 {
 public override void ProcessRequest(Purchase
purchase)
 {
 if (purchase.Amount < 28000.0)
 {
 Console.WriteLine("{0} approved
request# {1}",
 this.GetType().Name, purchase.Number);
 }
 else if (successor != null)
 {
 successor.ProcessRequest(purchase);
 }
 }
 }

 /// <summary> The 'ConcreteHandler' class
 /// </summary>

 public class President : Approver
 {
 public override void ProcessRequest(Purchase
purchase)
 {
 if (purchase.Amount < 110000.0)
 {
 Console.WriteLine("{0} approved request# {1}",

328 ◾ Appraisal

 this.GetType().Name, purchase.Number);
 }
 else
 {
 Console.WriteLine(
 "Request# {0} requires an executive
meeting!",
 purchase.Number);
 }
 }
 }

 /// <summary> Class holding request details
 /// </summary>

 public class Purchase
 {
 int number;
 double amount;
 string purpose;

 // Constructor

 public Purchase(int number, double amount, string
purpose)
 {
 this.number = number;
 this.amount = amount;
 this.purpose = purpose;
 }

 // Gets or sets the purchase number

 public int Number
 {
 get { return number; }
 set { number = value; }
 }

 // Gets or sets the purchase amount

 public double Amount
 {
 get { return amount; }
 set { amount = value; }
 }

 // Gets or sets the purchase purpose

Appraisal ◾ 329

COMMAND PATTERN
The Command Pattern is a Behavioral Design Pattern that encapsulates a
request as an object, allowing for the customization of clients with various
demands as well as the queuing or tracking of requests. In our scenario,
parameterizing additional objects with various demands implies that the
button used to turn on the lights may subsequently be used to turn on the
radio or open the garage door. It aids in elevating “method invocation on
an object” to complete object status. Essentially, it contains all of the infor-
mation required to execute an action or trigger an event.

The Problem without Utilizing the Command Pattern

Consider ourselves to be working on a code editor. Our current objective is
to add additional buttons to the editor’s toolbar for various actions. It is quite
simple to construct a single Button Class that can be used for all of the buttons.
Given that all of the buttons in the editor seem to be the same, what should
we do? Should we create several subclasses for each location where the but-
ton is used?

Problem without using Command Pattern.

 public string Purpose
 {
 get { return purpose; }
 set { purpose = value; }
 }
 }
}

330 ◾ Appraisal

Solution via Using the Command Pattern

Let’s have a look at the answer to the difficulty outlined above. It is usu-
ally a good idea to partition the program into multiple levels to facilitate
development and debugging. According to the command pattern, objects
should not submit these requests directly. Instead, we should isolate all
request data, such as the object being called, the method name, and the list
of arguments, into a distinct command class with a single function that
triggers this request.

"""Use built-in abc to implement the Abstract classes and
methods"""
from abc import ABC, abstractmethod

"""Class Dedicated to Command"""
class Command(ABC):

 """constructor-method"""
 def __init__(self, receiver):
 self.receiver = receiver

 """process-method"""
 def process(self):
 pass

"""Class dedicated to the Command Implementation"""
class CommandImplementation(Command):

 """constructor-method"""
 def __init__(self, receiver):
 self.receiver = receiver

 """process-method"""
 def process(self):
 self.receiver.perform_action()

"""Class dedicated to the Receiver"""
class Receiver:

 """perform action method"""
 def perform_action(self):
 print('Action performed in receiver.')

"""Class dedicated to the Invoker"""
class Invoker:

Appraisal ◾ 331

Advantages

• The Open/Closed Principle states that we may bring new commands
into the program without damaging the current client’s code.

• Single Responsibility Principle: It is quite simple to decouple the
classes that call operations from other classes in this case.

• Implementable UNDO/REDO: The Command Pattern may be used
to implement the functions of UNDO/REDO.

• Encapsulation: It aids in encapsulating all of the information
required to carry out an action or occurrence.

Disadvantages

• Complexity Increases: As we include further layers between senders
and receivers, the code’s complexity grows.

• Class Quantity Grows: The number of classes grows with each indi-
vidual command.

• Each command is a ConcreteCommand class, which increases the
number of classes for implementation and maintenance.

Applicability

• Implementing Reversible Operations: Because the Command Pattern
supports UNDO/REDO operations, we may potentially reverse the
operations.

 """command-method"""
 def command(self, cmd):
 self.cmd = cmd

 """execute-method"""
 def execute(self):
 self.cmd.process()

"""main-method"""
if __name__ == "__main__":

 """create the Receiver object"""
 receiver = Receiver()
 cmd = CommandImplementation(receiver)
 invoker = Invoker()
 invoker.command(cmd)
 invoker.execute()

332 ◾ Appraisal

• Parameterization: When we need to parameterize objects with
operations, we should always utilize the Command Pattern.

Command Pattern Usage

• It is utilized when you need to parameterize objects based on an
action.

• When requests must be created and executed at various times.

• When rollback, logging, or transaction functionality is required.

Example of Command Pattern in Java

• Step 1: Create an ActionListernerCommand interface to serve as a
Command.

• Step 2: Make a Document class that will serve as a Receiver.
File: Document.java

• Step 3: Make an ActionOpen class that will serve as a
ConcreteCommand.

File: ActionOpen.java

public class ActionOpen implements
ActionListenerCommand{
 private Document doc;

public class Document {
 public void open(){
 System.out.println("Document-Opened");
 }
 public void save(){
 System.out.println("Document-Saved");
 }
}

public interface ActionListenerCommand {
 public void execute();
}

Appraisal ◾ 333

• Step 4: Make an ActionSave class that will serve as a
ConcreteCommand.

File: AdapterPatternDemo.java

• Step 5: Make a MenuOptions class to serve as an Invoker.
File: ActionSave.java

public class ActionSave implements
ActionListenerCommand{
 private Document doc;
 public ActionSave(Document doc) {
 this.doc = doc;
 }
 @Override
 public void execute() {
 doc.save();
 }
 }

public class ActionSave implements
ActionListenerCommand{
 private Document doc;
 public ActionSave(Document doc) {
 this.doc = doc;
 }
 @Override
 public void execute() {
 doc.save();
 }
 }

 public ActionOpen(Document doc) {
 this.doc = doc;
 }
 @Override
 public void execute() {
 doc.open();
 }
}

334 ◾ Appraisal

• Step 6: Make a CommanPatternClient class to serve as a client.
File: AdapterPatternDemo.java

Command Pattern in C#

The Command Design Pattern encapsulates a request as an entity, allow-
ing us to parameterize clients, queue or log requests, and offer undoable
activities.

Participants
This pattern’s classes and objects are as follows:

1. Command (Command):

• Specifies an interface for carrying out an action.

2. ConcreteCommand (CalculatorCommand):

• Describes the relationship between a Receiver object and an
action.

• Execute is implemented by calling the relevant operation(s) on
Receiver.

3. Client (CommandApp):

• Constructs a ConcreteCommand object and assigns it a receiver.

public class CommandPatternClient {
 public static void main(String[] args) {
 Document doc = new Document();

 ActionListenerCommand clickOpen = new
ActionOpen(doc);
 ActionListenerCommand clickSave = new
ActionSave(doc);

 MenuOptions menu = new MenuOptions(clickOpen,
clickSave);

 menu.clickOpen();
 menu.clickSave();
 }
}

Appraisal ◾ 335

4. Invoker (User):

• Requests that the command carries out the request.

5. Recipient (Calculator):

• Understands how to carry out the activities linked with carrying
out the request.

C# Structural Code

The Command Pattern is demonstrated in this structured code, which
saves requests as objects and allows clients to execute or replay the requests.

using System;

namespace Command.Structural
{
 /// <summary> Command Design Pattern
 /// </summary>

 public class Program
 {
 public static void Main(string[] args)
 {
 // Create receiver, command, and invoker

 Receiver receiver = new Receiver();
 Command command = new
ConcreteCommand(receiver);
 Invoker invoker = new Invoker();

 // Set and execute the command

 invoker.SetCommand(command);
 invoker.ExecuteCommand();

 // Wait for the user

 Console.ReadKey();
 }
 }

 /// <summary> The 'Command' abstract class
 /// </summary>

 public abstract class Command

336 ◾ Appraisal

 {
 protected Receiver receiver;

 // Constructor

 public Command(Receiver receiver)
 {
 this.receiver = receiver;
 }

 public abstract void Execute();
 }

 /// <summary> The 'ConcreteCommand' class
 /// </summary>

 public class ConcreteCommand : Command
 {
 // Constructor

 public ConcreteCommand(Receiver receiver) :
 base(receiver)
 {
 }

 public override void Execute()
 {
 receiver.Action();
 }
 }

 /// <summary> The 'Receiver' class
 /// </summary>

 public class Receiver
 {
 public void Action()
 {
 Console.WriteLine("Called Receiver.Action()");
 }
 }

 /// <summary> The 'Invoker' class
 /// </summary>

 public class Invoker
 {
 Command command;

Appraisal ◾ 337

Real-World C# Code

This real-world code shows the Command Pattern in action in a basic cal-
culator with an infinite number of undo and redo. It’s worth noting that
the word “operator” is a keyword in C#. It may be used as an identifier by
prefixing it with “@”.

 public void SetCommand(Command command)
 {
 this.command = command;
 }

 public void ExecuteCommand()
 {
 command.Execute();
 }
 }
}

using System;
using System.Collections.Generic;

namespace Command.RealWorld
{
 /// <summary> Command Design Pattern
 /// </summary>

 public class Program
 {
 public static void Main(string[] args)
 {
 // Create a user and let compute

 User user = new User();

 // User presses the calculator buttons

 user.Compute('+', 120);
 user.Compute('-', 90);
 user.Compute('*', 14);
 user.Compute('/', 21);

 // Undo the 4 commands

 user.Undo(4);

338 ◾ Appraisal

 // Redo the 3 commands

 user.Redo(3);

 // Wait for the user

 Console.ReadKey();
 }
 }

 /// <summary> The 'Command' abstract class
 /// </summary>

 public abstract class Command
 {
 public abstract void Execute();
 public abstract void UnExecute();
 }

 /// <summary> The 'ConcreteCommand' class
 /// </summary>

 public class CalculatorCommand : Command
 {
 char @operator;
 int operand;
 Calculator calculator;

 // Constructor

 public CalculatorCommand(Calculator calculator,
 char @operator, int operand)
 {
 this.calculator = calculator;
 this.@operator = @operator;
 this.operand = operand;
 }

 // Gets-operator

 public char Operator
 {
 set { @operator = value; }
 }

 // Get-operand

 public int Operand

Appraisal ◾ 339

 {
 set { operand = value; }
 }

 // Execute the new command

 public override void Execute()
 {
 calculator.Operation(@operator, operand);
 }

 // Unexecute the last command

 public override void UnExecute()
 {
 calculator.Operation(Undo(@operator), operand);
 }

 // Returns the opposite operator for given operator

 private char Undo(char @operator)
 {
 switch (@operator)
 {
 case '+': return '-';
 case '-': return '+';
 case '*': return '/';
 case '/': return '*';
 default:
 throw new
 ArgumentException("@operator");
 }
 }
 }

 /// <summary> The 'Receiver' class
 /// </summary>

 public class Calculator
 {
 int curr = 0;

 public void Operation(char @operator, int operand)
 {
 switch (@operator)
 {
 case '+': curr += operand; break;
 case '-': curr -= operand; break;

340 ◾ Appraisal

 case '*': curr *= operand; break;
 case '/': curr /= operand; break;
 }
 Console.WriteLine(
 "Current value = {0,3} (following {1} {2})",
 curr, @operator, operand);
 }
 }

 /// <summary> The 'Invoker' class
 /// </summary>

 public class User
 {
 // Initializers

 Calculator calculator = new Calculator();
 List<Command> commands = new List<Command>();
 int current = 0;

 public void Redo(int levels)
 {
 Console.WriteLine("\n---- Redo {0} levels ",
levels);
 // Perform redo operations
 for (int x = 0; x < levels; x++)
 {
 if (current < commands.Count - 1)
 {
 Command command = commands[current++];
 command.Execute();
 }
 }
 }

 public void Undo(int levels)
 {
 Console.WriteLine("\n-- Undo {0} levels ",
levels);

 // Perform the undo operations

 for (int x = 0; x < levels; x++)
 {
 if (current > 0)
 {
 Command command = commands[--current]
as Command;

Appraisal ◾ 341

INTERPRETER PATTERN
One of the Behavioral Design Patterns is the Interpreter Design Pattern. The
interpreter pattern is used to specify a language’s grammatical representa-
tion and to offer an interpreter to deal with this grammar.

• This pattern entails developing an expression interface that instructs
how to comprehend a certain situation. This pattern is utilized in
SQL parsing, symbol processing engines, and other applications.

• This pattern is used to a hierarchy of expressions. Each expression in
this list is either terminal or non-terminal.

• The Interpreter Design Pattern’s tree structure is similar to that of
the Composite Design Pattern, with terminal expressions being leaf
objects and non-terminal expressions being composites.

• A parser generates the tree, which includes the expressions to be
evaluated. The interpreter pattern does not include the parser.

Components of Design

• AbstractExpression (Expression): Defines an interpret() action that
is overridden by all nodes (terminal and nonterminal) in the AST.

 command.UnExecute();
 }
 }
 }

 public void Compute(char @operator, int operand)
 {
 // Create the command operation and execute it

 Command command = new
CalculatorCommand(calculator, @operator, operand);
 command.Execute();

 // Add the command to undo list

 commands.Add(command);
 current++;
 }
 }
}

342 ◾ Appraisal

• TerminalExpression (NumberExpression): This class implements
the interpret() method for terminal expressions.

• NonterminalExpression: Implements the interpret() proce-
dure for all nonterminal expressions (AdditionExpression,
SubtractionExpression, and MultiplicationExpression).

• Context (String): Contains global information for the interpreter.
This String expression using Postfix notation must be evaluated and
processed.

• Client (ExpressionParser): Creates (or receives) the AST composed
of TerminalExpression and NonTerminalExpression. The interpret()
procedure is called by the Client.

Let’s look at an Interpreter Design Pattern sample.

// Expression interface used to check interpreter.
interface Expression
{
 boolean interpreter(String con);
}

// TerminalExpression class implementing
// above interface. This interpreter
// just check if data is same as the
// interpreter data.
class TerminalExpression implements Expression
{
 String data;

 public TerminalExpression(String data)
 {
 this.data = data;
 }

 public boolean interpreter(String con)
 {
 if(con.contains(data))
 {
 return true;
 }
 else
 {
 return false;
 }

Appraisal ◾ 343

 }
}
// OrExpression class implementing the
// above interface. This interpreter returns
// the or condition of the data
// is same as the interpreter data.
class OrExpression implements Expression
{
 Expression expr1;
 Expression expr2;

 public OrExpression(Expression expr1, Expression expr2)
 {
 this.expr1 = expr1;
 this.expr2 = expr2;
 }
 public boolean interpreter(String con)
 {
 return expr1.interpreter(con) || expr2
.interpreter(con);
 }
}

// AndExpression class implementing the above interface.
// This interpreter just returns the
// And condition of the
// data is same as interpreter data.
class AndExpression implements Expression
{
 Expression expr1;
 Expression expr2;

 public AndExpression(Expression expr1, Expression expr2)
 {
 this.expr1 = expr1;
 this.expr2 = expr2;
 }
 public boolean interpreter(String con)
 {
 return expr1.interpreter(con) && expr2.
interpreter(con);
 }
}

// Driver-class
class InterpreterPattern
{

 public static void main(String[] args)
 {

344 ◾ Appraisal

In the preceding code, we create an interface Expression and concrete
classes that implement the Expression interface. TerminalExpression is
defined as the primary interpreter, while the classes OrExpression and
AndExpression are used to generate combinational expressions.

Advantages

It is simple to modify and expand the grammar. Because the pattern
uses classes to describe grammatical rules, inheritance may be used to
modify or expand the grammar. Existing expressions may be progres-
sively updated, and new expressions can be created as variants of exist-
ing ones.

It is also simple to put the grammar into practice. The implementations
of classes that define nodes in the abstract syntax tree are comparable.
These classes are simple to build, and their production is often automated
by a compiler or parser generator.

 Expression person1 = new TerminalExpression
("Pushagra");
 Expression person2 = new
TerminalExpression("Nokesh");
 Expression isSingle = new OrExpression(person1,
person2);

 Expression vikram = new
TerminalExpression("Kiram");
 Expression committed = new TerminalExpression
("Committed");
 Expression isCommitted = new AndExpression(vikram,
committed);

 System.out.println(isSingle.
interpreter("Pushagra"));
 System.out.println(isSingle.interpreter("Nokesh"));
 System.out.println(isSingle.interpreter("Pchint"));

 System.out.println(isCommitted.
interpreter("Committed, Kiram"));
 System.out.println(isCommitted.interpreter("Single,
Kiram"));

 }
}

Appraisal ◾ 345

Disadvantages

Complex grammars are difficult to maintain. The Interpreter pattern spec-
ifies at least one class for each grammatical rule. As a result, grammar with
a large number of rules might be difficult to administer and maintain.

Implementation of Interpreter Pattern in Java

• Step 1: Create Pattern interface.

• Step 2: Create InfixToPostfixPattern class that will allow what kind
of pattern us want to convert.

File: InfixToPostfixPattern.java

public interface Pattern {
 public String conversion(String exp);
}

import java.util.Stack;
public class InfixToPostfixPattern implements Pattern{
 @Override
 public String conversion(String exp) {
 int priority = 0;// for the priority of
operators.
 String postfix = "";
 Stack st1 = new Stack();
 for (int x = 0; x < exp.length(); x++)
 {
 char ch = exp.charAt(i);
 if (ch == '+' || ch == '-' || ch == '*' ||
ch == '/'||ch=='%')
 {
 // check the precedence
 if (st1.size() <= 0)
 st1.push(ch);
 }
 else
 {
 Character chTop = (Character) st1.
peek();
 if (chTop == '*' || chTop == '/')
 priority = 1;
 else
 priority = 0;

346 ◾ Appraisal

• Step 3: Create InterpreterPatternClient class that will use
InfixToPostfix Conversion.

File: InterpreterPatternClient.java

public class InterpreterPatternClient {
 public static void main(String[] args)

 if (priority == 1)
 {
 if (ch == '*' || ch ==
'/'||ch=='%')
 {
 postfix += st1.pop();
 i--;
 }
 else
 { // Same
 postfix += st1.pop();
 i--;
 }
 }
 else
 {
 if (ch == '+' || ch == '-')
 {
 postfix += st1.pop();
 st1.push(ch);
 }
 else
 st1.push(ch);
 }
 }
 }
 else
 {
 postfix += ch;
 }
 }
 int len = st1.size();
 for (int y = 0; y < len; y++)
 postfix += st1.pop();
 return postfix;

 }
}// End of InfixToPostfixPattern class.

Appraisal ◾ 347

Interpreter Pattern in C#

The Interpreter Design Pattern, given a language, specifies a representa-
tion for its grammar as well as an interpreter that utilizes the representa-
tion to understand sentences in the language.

C# Structural Code

This structured code exhibits the Interpreter Patterns, which offer
an interpreter that interprets parsed sentences by utilizing a given
grammar.

 {
 String infix = "c+d*e";

 InfixToPostfixPattern ip=new
InfixToPostfixPattern();

 String postfix = ip.conversion(infix);
 System.out.println("Infix is: " + infix);
 System.out.println("Postfix is: " +
postfix);
 }
}

using System;
using System.Collections.Generic;

namespace Interpreter.Structural
{
 /// <summary> Interpreter Design Pattern
 /// </summary>

 public class Program
 {
 public static void Main(string[] args)
 {
 Context context = new Context();

 // Usually tree

 List<AbstractExpression> list = new
List<AbstractExpression>();

348 ◾ Appraisal

 // Populate the 'abstract syntax tree'

 list.Add(new TerminalExpression());
 list.Add(new NonterminalExpression());
 list.Add(new TerminalExpression());
 list.Add(new TerminalExpression());

 // Interpret

 foreach (AbstractExpression exp in list)
 {
 exp.Interpret(context);
 }

 // Wait for the user

 Console.ReadKey();
 }
 }

 /// <summary> The 'Context' class
 /// </summary>

 public class Context
 {
 }

 /// <summary> The 'AbstractExpression' abstract class
 /// </summary>

 public abstract class AbstractExpression
 {
 public abstract void Interpret(Context context);
 }

 /// <summary> The 'TerminalExpression' class
 /// </summary>

 public class TerminalExpression : AbstractExpression
 {
 public override void Interpret(Context context)
 {
 Console.WriteLine("Called Terminal.Interpret()");
 }
 }

 /// <summary> The 'NonterminalExpression' class
 /// </summary>

Appraisal ◾ 349

Real-World C# Code

This real-world code shows how to utilize the Interpreter pattern to con-
vert a Roman number to a decimal.

 public class NonterminalExpression : AbstractExpression
 {
 public override void Interpret(Context context)
 {
 Console.WriteLine("Called Nonterminal.
Interpret()");
 }
 }
}

using System.Collections.Generic;

namespace Interpreter.RealWorld
{
 /// <summary> Interpreter Design Pattern
 /// </summary>

 public class Program
 {
 public static void Main(string[] args)
 {
 string roman = "MCMXXVIII";
 Context context = new Context(roman);

 // Build 'parse tree'

 List<Expression> tree = new List<Expression>();
 tree.Add(new ThousandExpression());
 tree.Add(new HundredExpression());
 tree.Add(new TenExpression());
 tree.Add(new OneExpression());

 // Interpret

 foreach (Expression exp in tree)
 {
 exp.Interpret(context);
 }

 Console.WriteLine("{0} = {1}",
 roman, context.Output);

350 ◾ Appraisal

 // Wait for the user

 Console.ReadKey();
 }
 }

 /// <summary> The 'Context' class
 /// </summary>

 public class Context
 {
 string input;
 int output;

 // Constructor

 public Context(string input)
 {
 this.input = input;
 }

 public string Input
 {
 get { return input; }
 set { input = value; }
 }

 public int Output
 {
 get { return output; }
 set { output = value; }
 }
 }

 /// <summary> The 'AbstractExpression' class
 /// </summary>

 public abstract class Expression
 {
 public void Interpret(Context context)
 {
 if (context.Input.Length == 0)
 return;

 if (context.Input.StartsWith(Nine()))
 {
 context.Output += (9 * Multiplier());
 context.Input = context.Input.Substring(2);

Appraisal ◾ 351

 }
 else if (context.Input.StartsWith(Four()))
 {
 context.Output += (4 * Multiplier());
 context.Input = context.Input.Substring(2);
 }
 else if (context.Input.StartsWith(Five()))
 {
 context.Output += (5 * Multiplier());
 context.Input = context.Input.Substring(1);
 }

 while (context.Input.StartsWith(One()))
 {
 context.Output += (1 * Multiplier());
 context.Input = context.Input.Substring(1);
 }
 }

 public abstract string One();
 public abstract string Four();
 public abstract string Five();
 public abstract string Nine();
 public abstract int Multiplier();
 }

 /// <summary> A 'TerminalExpression' class
 /// <remarks> Thousand checks for the Roman Numeral M
</remarks>
 /// </summary>

 public class ThousandExpression : Expression
 {
 public override string One() { return "M"; }
 public override string Four() { return " "; }
 public override string Five() { return " "; }
 public override string Nine() { return " "; }
 public override int Multiplier() { return 1000; }
 }

 /// <summary> A 'TerminalExpression' class
 /// <remarks> Hundred checks C, CD, D or CM
 /// </remarks></summary>

 public class HundredExpression : Expression
 {
 public override string One() { return "C"; }
 public override string Four() { return "CD"; }

352 ◾ Appraisal

ITERATOR PATTERN
The Iterator Pattern is a Behavioral Design Pattern that allows us to
explore the items of collections without exposing the element’s in-depth
features. It allows you to access the elements of a complicated data struc-
ture sequentially without having to repeat them.

Iterator Pattern is used “to retrieve the elements of an aggregate object
progressively without disclosing its underlying implementation,” accord-
ing to GangOfFour.

 public override string Five() { return "D"; }
 public override string Nine() { return "CM"; }
 public override int Multiplier() { return 100; }
 }

 /// <summary>
 /// A 'TerminalExpression' class <remarks>
 /// Ten checks for X, XL, L and XC </remarks>
 /// </summary>

 public class TenExpression : Expression
 {
 public override string One() { return "X"; }
 public override string Four() { return "XL"; }
 public override string Five() { return "L"; }
 public override string Nine() { return "XC"; }
 public override int Multiplier() { return 10; }
 }

 /// <summary>
 /// A 'TerminalExpression' class <remarks>
 /// One checks for I, II, III, IV, V, VI, VI, VII,
VIII, IX </remarks>
 /// </summary>

 public class OneExpression : Expression
 {
 public override string One() { return "I"; }
 public override string Four() { return "IV"; }
 public override string Five() { return "V"; }
 public override string Nine() { return "IX"; }
 public override int Multiplier() { return 1; }
 }
}

Appraisal ◾ 353

The Problem without Employing the Iterator Pattern

Consider designing an application for tiny children that accepts any legiti-
mate alphabet as input and returns all alphabets up to that. When this pro-
gram is just used a few times, it is OK to execute the For loop and While loop
repeatedly, but as the frequency of running rises, this procedure becomes
rather wasteful. As a result, we must devise a method to prevent these
loops. This issue may grow more severe when we deal with complicated
non-linear data structures like Trees and Graphs, where traversing is not
as straightforward as it is in an array.

Iterator Pattern for Solution

The solution to the aforementioned issue will be discussed in this section.
Iterators are always useful for Python users when traversing any kind of data
structure, whether linear or non-linear. We have two alternatives for imple-
menting iterators in Python: we may utilize the built-in iterators to yield use-
ful results, or we can manually define iterators using Generators. The iterators
in the following code were specifically constructed using generators.

The following code is an example of an Iterator Pattern that was inten-
tionally built.

""" helper method for the iterator"""

def alphabets_upto(letter):
 """Counts by the word numbers, up to a maximum of
five"""
 for c in range(65, ord(letter)+1):
 yield chr(c)

"""main-method"""
if __name__ == "__main__":

 alphabets_upto_K = alphabets_upto('K')
 alphabets_upto_M = alphabets_upto('M')

 for alpha in alphabets_upto_K:
 print(alpha, end=" ")

 print()

 for alpha in alphabets_upto_M:
 print(alpha, end=" ")

354 ◾ Appraisal

The following code demonstrates the use of an in-built Iterator Pattern.

Advantages

• Single Responsibility Principle: The Iterator Pattern makes it very
simple to divide large algorithms into different classes.

• Passing new iterators and collections into the client code does not
damage the code and can be simply implemented into it.

• Easy to Use Interface: It makes the interface very simple to use and
also permits changes in collection traversal.

Disadvantages

• Unnecessary Wasting Resources: Using the Iterator Pattern is not
always a good practice since it might be overuse of resources in a
small application where advanced things are not necessary.

"""utility-function"""
def inBuilt_Iterator1():

 alphabets = [chr(i) for c in range(55, 92)]

 """using the in-built iterator"""
 for alpha in alphabets:
 print(alpha, end = " ")
 print()

"""utility-function"""
def inBuilt_Iterator2():

 alphabets = [chr(i) for c in range(93, 133)]

 """using the in-built iterator"""
 for alpha in alphabets:
 print(alpha, end = " ")
 print()

"""main-method"""
if __name__ == "__main__" :

 """call inbuiltIterators"""
 inBuilt_Iterator1()
 inBuilt_Iterator2()

Appraisal ◾ 355

• Increases Complexity: As previously stated, employing the Iterator
Pattern complicates basic applications.

• Reduces Efficiency: In terms of efficiency, accessing elements directly
is much superior to accessing elements through the iterator.

Applicability

• When we wish to access the elements at a lower level and are not
concerned with the underlying implementation of the elements, the
Iterator Pattern is always chosen.

• Traversing Unknown Data Structures: Because the code offers
a pair of generic interfaces for both collections and iterators, the
Iterator Pattern may be simply used to traverse many sorts of data
structures like Trees, Graphs, Stacks, Queues, and so on.

Implementation of Iterator Pattern in Java

• Step 1: Create Iterartor interface.

• Step 2: Create Container interface.

• Step 3: Create CollectionofNames class that will implement the
Container interface.

File: CollectionofNames.java

public class CollectionofNames implements Container {
 public String name[]={"Ashwani Rajput", "Sonu
Pswal","Tishi Kaur","Raman Mehra","Heena Garg"};

public interface Container {
 public Iterator getIterator();
}// End of Iterator interface.

public interface Iterator {
 public boolean hasNext();
 public Object next();
}

356 ◾ Appraisal

• Step 4: Create IteratorPatternDemo class.
File: IteratorPatternDemo.java

Iterator Pattern in C#

The Iterator Design Pattern enables sequential access to the constituents of
an aggregate object without disclosing its underlying representation.

public class IteratorPatternDemo {
 public static void main(String[] args) {
 CollectionofNames cmpnyRepository = new
CollectionofNames();

 for(Iterator iter = cmpnyRepository.
getIterator(); iter.hasNext();){
 String name = (String)iter.next();
 System.out.println("Name is : " + name);
 }
 }
}

 @Override
 public Iterator getIterator() {
 return new CollectionofNamesIterate() ;
 }
 private class CollectionofNamesIterate
implements Iterator{
 int x;
 @Override
 public boolean hasNext() {
 if (x<name.length){
 return true;
 }
 return false;
 }
 @Override
 public Object next() {
 if(this.hasNext()){
 return name[x++];
 }
 return null;
 }
 }
 }
 }

Appraisal ◾ 357

C# Structural Code

This structural code exhibits the Iterator Pattern, which allows us to tra-
verse (iterate) across a collection of objects without revealing the collec-
tion’s underlying structure.

using System;
using System.Collections.Generic;

namespace Iterator.Structural
{
 /// <summary> Iterator Design Pattern
 /// </summary>

 public class Program
 {
 public static void Main(string[] args)
 {
 ConcreteAggregate x = new ConcreteAggregate();
 x[0] = "Item A";
 x[1] = "Item B";
 x[2] = "Item C";
 x[3] = "Item D";

 // Create Iterator and provide aggregate

 Iterator i = x.CreateIterator();

 Console.WriteLine("Iterating over
collection:");

 object item = i.First();

 while (item != null)
 {
 Console.WriteLine(item);
 item = i.Next();
 }

 // Wait for the user

 Console.ReadKey();
 }
 }

 /// <summary> The 'Aggregate' abstract class
 /// </summary>

358 ◾ Appraisal

 public abstract class Aggregate
 {
 public abstract Iterator CreateIterator();
 }

 /// <summary> The 'ConcreteAggregate' class
 /// </summary>

 public class ConcreteAggregate : Aggregate
 {
 List<object> items = new List<object>();

 public override Iterator CreateIterator()
 {
 return new ConcreteIterator(this);
 }

 // Get the item count

 public int Count
 {
 get { return items.Count; }
 }

 // Indexer

 public object this[int index]
 {
 get { return items[index]; }
 set { items.Insert(index, value); }
 }
 }

 /// <summary> The 'Iterator' abstract class
 /// </summary>

 public abstract class Iterator
 {
 public abstract object First();
 public abstract object Next();
 public abstract bool IsDone();
 public abstract object CurrentItem();
 }

 /// <summary> The 'ConcreteIterator' class
 /// </summary>

 public class ConcreteIterator : Iterator
 {

Appraisal ◾ 359

 ConcreteAggregate aggregate;
 int current = 0;

 // Constructor

 public ConcreteIterator(ConcreteAggregate
aggregate)
 {
 this.aggregate = aggregate;
 }

 // Gets the first iteration item

 public override object First()
 {
 return aggregate[0];
 }

 // Gets the next iteration item

 public override object Next()
 {
 object ret = null;
 if (current < aggregate.Count - 1)
 {
 ret = aggregate[++current];
 }

 return ret;
 }

 // Gets the current iteration item

 public override object CurrentItem()
 {
 return aggregate[current];
 }

 // Gets the whether iterations are complete

 public override bool IsDone()
 {
 return current >= aggregate.Count;
 }
 }
}

360 ◾ Appraisal

Real-World C# Code

This real-world code displays the Iterator Pattern, which is used to
iterate over a collection of things while skipping a set amount of items
each time.

using System;
using System.Collections.Generic;

namespace Iterator.RealWorld
{
 /// <summary> Iterator Design Pattern
 /// </summary>

 public class Program
 {
 public static void Main(string[] args)
 {
 // Build collection

 Collection collection = new Collection();
 collection[0] = new Item("Item 0");
 collection[1] = new Item("Item 1");
 collection[2] = new Item("Item 2");
 collection[3] = new Item("Item 3");
 collection[4] = new Item("Item 4");
 collection[5] = new Item("Item 5");
 collection[6] = new Item("Item 6");
 collection[7] = new Item("Item 7");
 collection[8] = new Item("Item 8");

 // Create the iterator

 Iterator iterator = collection.CreateIterator();

 // Skip the every other item

 iterator.Step = 2;

 Console.WriteLine("Iterating over collection:");

 for (Item item = iterator.First();
 !iterator.IsDone; item = iterator.Next())
 {
 Console.WriteLine(item.Name);
 }

 // Wait for the user

Appraisal ◾ 361

 Console.ReadKey();
 }
 }
 /// <summary> A collection item
 /// </summary>

 public class Item
 {
 string name;

 // Constructor

 public Item(string name)
 {
 this.name = name;
 }

 public string Name
 {
 get { return name; }
 }
 }

 /// <summary> The 'Aggregate' interface
 /// </summary>

 public interface IAbstractCollection
 {
 Iterator CreateIterator();
 }

 /// <summary> The 'ConcreteAggregate' class
 /// </summary>

 public class Collection : IAbstractCollection
 {
 List<Item> items = new List<Item>();

 public Iterator CreateIterator()
 {
 return new Iterator(this);
 }

 // Gets item count

 public int Count
 {
 get { return items.Count; }
 }

362 ◾ Appraisal

 // Indexer

 public Item this[int index]
 {
 get { return items[index]; }
 set { items.Add(value); }
 }
 }

 /// <summary> The 'Iterator' interface
 /// </summary>

 public interface IAbstractIterator
 {
 Item First();
 Item Next();
 bool IsDone { get; }
 Item CurrentItem { get; }
 }

 /// <summary> The 'ConcreteIterator' class
 /// </summary>

 public class Iterator : IAbstractIterator
 {
 Collection collection;
 int current = 0;
 int step = 1;

 // Constructor

 public Iterator(Collection collection)
 {
 this.collection = collection;
 }

 // Gets the first item

 public Item First()
 {
 current = 0;
 return collection[current] as Item;
 }

 // Gets the next item

 public Item Next()
 {

Appraisal ◾ 363

MEDIATOR PATTERN
The Mediator Pattern is a Behavioral Design Pattern that allows us to reduce
the objects’ unordered dependencies. Objects in a mediator environment use
mediator object to communicate with one another. It decreases coupling by
removing dependencies between communication items. The mediator acts as
a conduit between objects and might have its logic to facilitate communication.

Components of Design

The mediator defines the interface for communication between coworker
objects.

• Concrete Mediator: This object implements the mediator interface
and organizes communication among colleagues.

 current += step;
 if (!IsDone)
 return collection[current] as Item;
 else
 return null;
 }

 // Gets or sets the stepsize

 public int Step
 {
 get { return step; }
 set { step = value; }
 }

 // Gets the current iterator item

 public Item CurrentItem
 {
 get { return collection[current] as Item; }
 }

 // Gets whether the iteration is complete

 public bool IsDone
 {
 get { return current >= collection.Count; }
 }
 }
}

364 ◾ Appraisal

• Colleague: It defines the communication interface with other
colleagues.

• Concrete Colleague: It uses its mediator to interact with colleagues
and implements the colleague interface.

The Problem without Employing the Mediator Pattern

Consider enrolling in one of the premier courses provided by PeeksforPeeks,
such as DSA, SDE, or STL. Initially, there were relatively few students
interested in enrolling in these classes. Initially, the developer may estab-
lish distinct objects and classes to link students and courses. Still, as the
courses gain popularity among students, it becomes difficult for develop-
ers to manage such a large number of subclasses and associated objects.

Solution Using the Mediator Pattern

Consider how a professional developer might utilize the Mediator Design
Pattern to handle such a circumstance. We may construct a distinct media-
tor class called Course and a User Class from which we can generate differ-
ent Course class objects. In the main function, we will construct a distinct
object for each student, and within the User class, we will build the object
for the Course class, preventing unordered code.

class Course(object):
 """Mediator class."""

 def displayCourse(self, user, course_name):
 print("[{}'s course]: {}".format(user, course_name))

class User(object):
 '''A class whose instances want to interact with the
each other.'''

 def __init__(self, name):
 self.name = name
 self.course = Course()

 def sendCourse(self, course_name):
 self.course.displayCourse(self, course_name)

 def __str__(self):
 return self.name

Appraisal ◾ 365

Advantages

• Single Responsibility Principle: The Mediator Pattern allows for the
extraction of communications between diverse components into a
single location that is simpler to manage.

• The open/closed principle states that it is simple to add new media-
tors without disrupting the current client code.

• Allows Inheritance: Because of the Inheritance, we may reuse the
different components of the mediators.

• Few Subclasses: The mediator restricts the Subclassing since the
mediator localizes the behavior that would otherwise be disrupted
among the several objects.

Disadvantages

• Because the Mediator Pattern sacrifices interaction complexity for
mediator complexity, it entirely centralizes control.

• A Mediator may be transformed into a God Object (an object that
knows too much or does too much).

• Increased Complexity: If we place too much logic within the media-
tor object, its structure may become too complicated.

Applicability

• Reduce the Number of Subclassifications: When you notice you’ve
built a lot of superfluous subclasses, it’s best to utilize the Mediator
Pattern to prevent these extraneous subclasses.

"""main-method"""

if __name__ == "__main__":

 sayank = User('Sayank') # user-object
 nakshya = User('Nakshya') # user-object
 mrishna = User('Mrishna') # user-object

 sayank.sendCourse("Data-Structures and Algorithms")
 nakshya.sendCourse("Software-Development Engineer")
 mrishna.sendCourse("Standard-Template Library")

366 ◾ Appraisal

• Air Traffic Controller: The airport control center serves as a media-
tor for communication between various planes, which is a perfect
example of a Mediator Pattern.

Implementation of Mediator Pattern in Java

• Step 1: Create ApnaChatRoom interface.

• Step 2: Create an ApnaChatRoomIml class that implements the
ApnaChatRoom interface and also uses the Participant interface to
count the number of people conversing.

//This is a class.
import java.text.DateFormat;
import java.text.SimpleDateFormat;
import java.util.Date;

public class ApnaChatRoomImpl implements ApnaChatRoom{
 //get the current date time
 DateFormat dateFormat = new SimpleDateFormat("E
dd-MM-yyyy hh:mm a");
 Date date = new Date();
 @Override
 public void showMsg(String msg, Participant p1) {

 System.out.println(p1.getName()+"'gets
message: "+msg);
 System.out.println("\t\t\t\t"+"["+dateFormat.
format(date).toString()+"]");
 }
}// End of ApnaChatRoomImpl class.

//This is an interface.
public interface ApnaChatRoom {

 public void showMsg(String msg, Participant p1);

}// End of ApnaChatRoom interface.

Appraisal ◾ 367

• Step 3: Create Participant abstract class.

• Step 4: Create a User1 class that extends the abstract Participant class
and implements the ApnaChatRoom interface.

//This is abstract class.
public abstract class Participant {
 public abstract void sendMsg(String msg);
 public abstract void setname(String name);
 public abstract String getName();
}// End of Participant abstract class.

//This is class.

public class User1 extends Participant {

 private String name;
 private ApnaChatRoom chat;

 @Override
 public void sendMsg(String msg) {
 chat.showMsg(msg,this);

 }

 @Override
 public void setname(String name) {
 this.name=name;
 }

 @Override
 public String getName() {
 return name;
 }

 public User1(ApnaChatRoom chat){
 this.chat=chat;
 }

}// End of User1 class.

368 ◾ Appraisal

• Step 5: Create a User2 class that extends the abstract Participant class
and implements the ApnaChatRoom interface.

• Step 6: Create a MediatorPatternDemo class that will utilize chat
participants.

//This is class.

public class MediatorPatternDemo {

 public static void main(String args[])
 {

//This is class.

public class User2 extends Participant {

 private String name;
 private ApnaChatRoom chat;

 @Override
 public void sendMsg(String msg) {
 this.chat.showMsg(msg,this);

 }

 @Override
 public void setname(String name) {
 this.name=name;
 }

 @Override
 public String getName() {
 return name;
 }

 public User2(ApnaChatRoom chat){
 this.chat=chat;
 }

}
// End of User2 class.

Appraisal ◾ 369

Mediator Pattern in C#

The Mediator Design Pattern describes an entity that captures how a
group of items communicate with one another. The mediator encourages
loose coupling by preventing objects from directly referring to each other,
allowing us to alter their interaction freely.

C# Structural Code

This structured code exemplifies the Mediator Pattern, which enables
loosely connected communication between various objects and object
kinds. The mediator serves as a central hub through which all interactions
must pass.

 ApnaChatRoom chat = new ApnaChatRoomImpl();

 User1 u1=new User1(chat);
 u1.setname("Swani Rai");
 u1.sendMsg("Hello Swani! how are you
doing?");

 User2 u2=new User2(chat);
 u2.setname("Sonu Rajpal");
 u2.sendMsg("I'm Fine ! U tell?");
 }

}// End of MediatorPatternDemo class.

using System;

namespace Mediator.Structural
{
 /// <summary> Mediator Design Pattern
 /// </summary>

 public class Program
 {
 public static void Main(string[] args)
 {
 ConcreteMediator mt = new ConcreteMediator();

 ConcreteColleague1 ct1 = new
ConcreteColleague1(m);

370 ◾ Appraisal

 ConcreteColleague2 ct2 = new
ConcreteColleague2(m);

 mt.Colleague1 = ct1;
 mt.Colleague2 = ct2;

 ct1.Send("How are you doing?");
 ct2.Send("Fine, thankyou");

 // Wait for the user

 Console.ReadKey();
 }
 }

 /// <summary> The 'Mediator' abstract class
 /// </summary>

 public abstract class Mediator
 {
 public abstract void Send(string message,
 Colleague colleague);
 }

 /// <summary> The 'ConcreteMediator' class
 /// </summary>

 public class ConcreteMediator : Mediator
 {
 ConcreteColleague1 colleague1;
 ConcreteColleague2 colleague2;

 public ConcreteColleague1 Colleague1
 {
 set { colleague1 = value; }
 }

 public ConcreteColleague2 Colleague2
 {
 set { colleague2 = value; }
 }

 public override void Send(string message, Colleague
colleague)
 {
 if (colleague == colleague1)
 {
 colleague2.Notify(message);
 }

Appraisal ◾ 371

 else
 {
 colleague1.Notify(message);
 }
 }
 }

 /// <summary> The 'Colleague' abstract class
 /// </summary>

 public abstract class Colleague
 {
 protected Mediator mediator;

 // Constructor

 public Colleague(Mediator mediator)
 {
 this.mediator = mediator;
 }
 }

 /// <summary> A 'ConcreteColleague' class
 /// </summary>

 public class ConcreteColleague1 : Colleague
 {
 // Constructor

 public ConcreteColleague1(Mediator mediator)
 : base(mediator)
 {
 }

 public void Send(string message)
 {
 mediator.Send(message, this);
 }

 public void Notify(string message)
 {
 Console.WriteLine("Colleague1 gets the message: "
 + message);
 }
 }

 /// <summary> A 'ConcreteColleague' class
 /// </summary>

372 ◾ Appraisal

Real-World C# Code

This real-world code exemplifies the Mediator Pattern, which facili-
tates loosely connected communication between multiple Chatroom
Participants. The Chatroom serves as the major focus for all conversa-
tions. The Chatroom now only supports one-to-one conversation; how-
ever, changing to one-to-many would be simple.

 public class ConcreteColleague2 : Colleague
 {
 // Constructor

 public ConcreteColleague2(Mediator mediator)
 : base(mediator)
 {
 }

 public void Send(string message)
 {
 mediator.Send(message, this);
 }

 public void Notify(string message)
 {
 Console.WriteLine("Colleague2 gets the
message: "
 + message);
 }
 }
}

using System;
using System.Collections.Generic;

namespace Mediator.RealWorld
{
 /// <summary> Mediator Design Pattern
 /// </summary>

 public class Program
 {
 public static void Main(string[] args)
 {
 // Create the chatroom

Appraisal ◾ 373

 Chatroom chatroom = new Chatroom();

 // Create the participants and register them

 Participant George = new Beatle("Korge");
 Participant Paul = new Beatle("Naun");
 Participant Ringo = new Beatle("Lingo");
 Participant John = new Beatle("Rohan");
 Participant Yoko = new NonBeatle("Loko");

 chatroom.Register(Korge);
 chatroom.Register(Naun);
 chatroom.Register(Lingo);
 chatroom.Register(Rohan);
 chatroom.Register(Loko);

 // Chatting participants

 Yoko.Send("John", "Hello Rohan!");
 Paul.Send("Ringo", "All we need is love");
 Ringo.Send("George", "Sweet Lord");
 Paul.Send("John", "Money Can't buy me love");
 John.Send("Yoko", "My sweet Sugar");

 // Wait for the user

 Console.ReadKey();
 }
 }

 /// <summary> The 'Mediator' abstract class
 /// </summary>

 public abstract class AbstractChatroom
 {
 public abstract void Register(Participant
participant);
 public abstract void Send(
 string from, string to, string message);
 }

 /// <summary> The 'ConcreteMediator' class
 /// </summary>

 public class Chatroom : AbstractChatroom
 {
 private Dictionary<string, Participant>
participants = new Dictionary<string, Participant>();

374 ◾ Appraisal

 public override void Register(Participant participant)
 {
 if (!participants.ContainsValue(participant))
 {
 participants[participant.Name] =
participant;
 }

 participant.Chatroom = this;
 }

 public override void Send(string from, string to,
string message)
 {
 Participant participant = participants[to];

 if (participant != null)
 {
 participant.Receive(from, message);
 }
 }
 }

 /// <summary> The 'AbstractColleague' class
 /// </summary>

 public class Participant
 {
 Chatroom chatroom;
 string name;

 // Constructor

 public Participant(string name)
 {
 this.name = name;
 }

 // Gets the participant name

 public string Name
 {
 get { return name; }
 }

 // Gets the chatroom

 public Chatroom Chatroom

Appraisal ◾ 375

 {
 set { chatroom = value; }
 get { return chatroom; }
 }

 // Sends a message to the given participant

 public void Send(string to, string message)
 {
 chatroom.Send(name, to, message);
 }

 // Receives message from the given participant

 public virtual void Receive(
 string from, string message)
 {
 Console.WriteLine("{0} to {1}: '{2}'",
 from, Name, message);
 }
 }

 /// <summary> A 'ConcreteColleague' class
 /// </summary>

 public class Beatle : Participant
 {
 // Constructor

 public Beatle(string name)
 : base(name)
 {
 }

 public override void Receive(string from, string
message)
 {
 Console.Write("To a Beatle: ");
 base.Receive(from, message);
 }
 }

 /// <summary> A 'ConcreteColleague' class
 /// </summary>

 public class NonBeatle : Participant
 {
 // Constructor

376 ◾ Appraisal

MEMENTO PATTERN
The Memento Pattern is a Behavioral Design Pattern that allows us to
return an item to its earlier state. It enables us to save and restore the
previous version of the object without disclosing the specifics of particu-
lar implementations. It strives not to break the code’s encapsulation and
enables us to capture and externalize an object’s internal state.

The Problem without Employing the Memento Pattern

Assume we are a student who wants to flourish in the world of competi-
tive programming, but you are having difficulty finding a decent Code
Editor for programming. None of the existing code editors meet our
expectations, so we attempt to create one for ourselves. UNDO and
REDO are two of the most critical capabilities in any Code Editor,
and we’ll need them both. As novice developers, we just took the
straightforward way of saving all accomplished activities. Of sure, this
method will work, but it will be inefficient.

Memento Pattern Solution

Let’s talk about how to solve the previously mentioned difficulty. The whole
issue can be simply fixed by not altering the code’s encapsulation. The issue
emerges when certain items attempt to execute additional duties that are
not allocated to them, so invading the private space of other objects. The
Memento Pattern depicts the process of producing state snapshots for
the true owner of that state, the originator object. As a result, rather than
other objects attempting to duplicate the editor’s state from the “outside,”
the editor class may take a snapshot since it has complete access to its state.

 public NonBeatle(string name)
 : base(name)
 {
 }

 public override void Receive(string from, string
message)
 {
 Console.Write("To non-Beatle: ");
 base.Receive(from, message);
 }
 }
}

Appraisal ◾ 377

According to the pattern, we should save a replica of the object’s state
in a special object called Memento. The content of the Memento objects
should be available only to the object that created it.

"""Memento class for saving data"""

class Memento:

 """Constructor-function"""
 def __init__(self, file, content):

 """put all our file content here"""

 self.file = file
 self.content = content

"""It's a File Writing Utility"""

class FileWriterUtility:

 """Constructor-Function"""

 def __init__(self, file):

 """store the input file data"""
 self.file = file
 self.content = ""

 """Write data into the file"""

 def write(self, string):
 self.content += string

 """save data into the Memento"""

 def save(self):
 return Memento(self.file, self.content)

 """UNDO-feature provided"""

 def undo(self, memento):
 self.file = memento.file
 self.content = memento.content

"""CareTaker for the FileWriter"""

class FileWriterCaretaker:

 """saves-data"""

378 ◾ Appraisal

Advantages

• Encourages Encapsulation: The Memento Pattern may assist in
creating the state of the object without violating the client’s code’s
encapsulation.

• Simplifies Code: We may use a caretaker to assist us in simplifying
the code by preserving the history of the originator’s code.

• General Memento’s Implementation: It is preferable to utilize
Serialization to obtain a more generic Memento Pattern implemen-
tation rather than Memento Pattern where each object must have its
own Memento class implementation.

 def save(self, writer):
 self.obj = writer.save()

 """undo the content"""

 def undo(self, writer):
 writer.undo(self.obj)

if __name__ == '__main__':

 """create caretaker object"""
 caretaker = FileWriterCaretaker()

 """create writer object"""
 writer = FileWriterUtility("PFP.txt")

 """write data into file using the writer object"""
 writer.write("First vision of PeeksforPeeks\n")
 print(writer.content + "\n\n")

 """save-file"""
 caretaker.save(writer)

 """again write using the writer """
 writer.write("Second vision of PeeksforPeeks\n")

 print(writer.content + "\n\n")

 """undo-file"""
 caretaker.undo(writer)

 print(writer.content + "\n\n")

Appraisal ◾ 379

Disadvantages

• Huge Memory Consumption: If the Originator’s object is extremely
large, the Memento object size will be large, using a lot of memory,
which is clearly not the most efficient method to complete the task.

• Problem with Dynamic Languages: Because dynamic languages,
such as Ruby, Python, and PHP, are dynamically typed, they cannot
ensure that the memento object will not touch.

• Difficult Deletion: Deleting the memento object is difficult since the
caretaker must trace the originator’s lifespan to get the outcome.

Applicability

• UNDO and REDO: For the convenience of the client, most software
products, such as Paint, coding IDEs, text editors, and many more,
have UNDO and REDO functions.

• Encapsulation: We may utilize Memento’s approach to avoid encap-
sulation breakdown in the client’s code, which could be caused by
direct access to the object’s internal implementation.

Memento

• Stores the originating object’s internal state. The state can have an
unlimited number of state variables.

• The Memento must have two interfaces: one to the outside world and
one to the caretaker. This interface must not enable any actions or
access to the memento’s internal state to preserve encapsulation. The
other interface is Originator, which allows the Originator to access
any state variables required to restore the prior state.

Originator

• Generates a memento object that captures Originator’s internal state.

• Use the memento object to return it to its original condition.

Caretaker

• In charge of maintaining the remembrance.

• The memento is visible to the caretaker, and the caretaker must not
use it.

380 ◾ Appraisal

Memento Pattern Implementation in Java

• Step 1: Create an Originator class that will use a Memento object to
recover its earlier state.

• Step 2: Create a Memento class to store the Originator object’s
internal state.

//This is class.

public class Memento {

 private String state;

 public Memento(String state) {
 this.state=state;
 }
 public String getState() {
 return state;
 }

}// End of Memento class.

//This is class.

public class Originator {

 private String state;

 public void setState(String state){
 this.state = state;
 }

 public String getState(){
 return state;
 }

 public Memento saveStateToMemento(){
 return new Memento(state);
 }

 public void getStateFromMemento(Memento Memento){
 state = Memento.getState();
 }
}// End of Originator class.

Appraisal ◾ 381

• Step 3: Make a Caretaker class that will be in charge of preserving
the Memento.

• Step 4: Create MementoPatternDemo class.

//This is class.

import java.util.ArrayList;
import java.util.List;

public class Caretaker {

 private List mementoList = new ArrayList();

 public void add(Memento state){
 mementoList.add(state);
 }

 public Memento get(int index){
 return mementoList.get(index);
 }

}// End of Caretaker class.

//This is class.

public class MementoPatternDemo {

 public static void main(String[] args) {

 Originator originator = new Originator();

 Caretaker careTaker = new Caretaker();

 originator.setState("State#1");
 careTaker.add(originator.
saveStateToMemento());
 originator.setState("State#2");
 careTaker.add(originator.saveStateToMemento());
 originator.setState("State#3");
 careTaker.add(originator.saveStateToMemento());
 originator.setState("State#4");

382 ◾ Appraisal

Memento Pattern in C#

The Memento Design Pattern captures and externalizes an object’s internal
state without breaching encapsulation so that the object may be restored to
this state later.

C# Structural Code

This structured code exemplifies the Memento Pattern, which temporarily
saves and restores the internal state of another object.

using System;

namespace Memento.Structural
{
 /// <summary> Memento Design Pattern
 /// </summary>

 public class Program
 {
 public static void Main(string[] args)
 {
 Originator or = new Originator();
 or.State = "On";

 // Store the internal state

 System.out.println("Current State: "
+ originator.getState());
 originator.getStateFromMemento(careTaker.
get(0));
 System.out.println("First saved State:
" + originator.getState());
 originator.getStateFromMemento(careTaker.
get(1));
 System.out.println("Second saved State:
" + originator.getState());
 originator.getStateFromMemento(careTaker.
get(2));
 System.out.println("Third saved State is:
" + originator.getState());
 }

}
// End of MementoPatternDemo class.

Appraisal ◾ 383

 Caretaker cr = new Caretaker();
 cr.Memento = or.CreateMemento();

 // Continue the changing originator

 or.State = "Off";

 // Restore the saved state

 or.SetMemento(cr.Memento);

 // Wait for the user

 Console.ReadKey();
 }
 }

 /// <summary> The 'Originator' class
 /// </summary>

 public class Originator
 {
 string state;

 public string State
 {
 get { return state; }
 set
 {
 state = value;
 Console.WriteLine("State = " + state);
 }
 }

 // Creates the memento

 public Memento CreateMemento()
 {
 return (new Memento(state));
 }

 // Restores the original state

 public void SetMemento(Memento memento)
 {
 Console.WriteLine("Restoring state.");
 State = memento.State;
 }
 }

384 ◾ Appraisal

Real-World C# Code

This real-world code exhibits the Memento Pattern, which saves and then
restores the internal state of the SalesProspect.

 /// <summary> The 'Memento' class
 /// </summary>

 public class Memento
 {
 string state;

 // Constructor

 public Memento(string state)
 {
 this.state = state;
 }

 public string State
 {
 get { return state; }
 }
 }

 /// <summary> The 'Caretaker' class
 /// </summary>

 public class Caretaker
 {
 Memento memento;

 public Memento Memento
 {
 set { memento = value; }
 get { return memento; }
 }
 }
}

using System;

namespace Memento.RealWorld
{
 /// <summary> Memento Design Pattern
 /// </summary>

Appraisal ◾ 385

 public class Program
 {
 public static void Main(string[] args)
 {
 SalesProspect sp = new SalesProspect();
 sp.Name = "Niel ban Alen";
 sp.Phone = "(312) 246-0980";
 sp.Budget = 29000.0;

 // Store the internal state

 ProspectMemory mt = new ProspectMemory();
 mt.Memento = sp.SaveMemento();

 // Continue the changing originator

 sp.Name = "Jeo Nelch";
 sp.Phone = "(210) 309-7111";
 sp.Budget = 1500000.0;

 // Restore the saved state

 sp.RestoreMemento(m.Memento);

 // Wait for the user

 Console.ReadKey();
 }
 }

 /// <summary> The 'Originator' class
 /// </summary>

 public class SalesProspect
 {
 string name;
 string phone;
 double budget;

 // Gets or sets the name

 public string Name
 {
 get { return name; }
 set
 {
 name = value;
 Console.WriteLine("Name: " + name);

386 ◾ Appraisal

 }
 }

 // Gets or sets the phone

 public string Phone
 {
 get { return phone; }
 set
 {
 phone = value;
 Console.WriteLine("Phone: " + phone);
 }
 }

 // Gets or sets the budget

 public double Budget
 {
 get { return budget; }
 set
 {
 budget = value;
 Console.WriteLine("Budget: " + budget);
 }
 }

 // Stores-memento

 public Memento SaveMemento()
 {
 Console.WriteLine("\nSaving state --\n");
 return new Memento(name, phone, budget);
 }

 // Restores-memento

 public void RestoreMemento(Memento memento)
 {
 Console.WriteLine("\nRestoring state --\n");
 Name = memento.Name;
 Phone = memento.Phone;
 Budget = memento.Budget;
 }
 }

 /// <summary> The 'Memento' class
 /// </summary>

Appraisal ◾ 387

 public class Memento
 {
 string name;
 string phone;
 double budget;

 // Constructor

 public Memento(string name, string phone, double
budget)
 {
 this.name = name;
 this.phone = phone;
 this.budget = budget;
 }

 public string Name
 {
 get { return name; }
 set { name = value; }
 }

 public string Phone
 {
 get { return phone; }
 set { phone = value; }
 }

 public double Budget
 {
 get { return budget; }
 set { budget = value; }
 }
 }

 /// <summary> The 'Caretaker' class
 /// </summary>

 public class ProspectMemory
 {
 Memento memento;

 public Memento Memento
 {
 set { memento = value; }
 get { return memento; }
 }
 }
}

388 ◾ Appraisal

STATE PATTERN
The State Pattern is a Behavioral Design Pattern that enables an object to
adjust its behavior when its internal state changes. It aids in the implemen-
tation of the State Pattern interface as a derived class. If we need to modify
an object’s behavior depending on its state, we may create a state variable
in the Object and use an if-else condition block to do various actions based
on the state. It is known as the object-oriented state machine. It implements
the state transitions by calling methods from the superclass of the pattern.

The Problem without Employing the State Pattern

The State Pattern represents the Finite State Machine.
At any one time, the program may include a limited number of states.

Each stage is distinct in terms of behavior and other characteristics. Even
the software may transition from one state to another at any time. A pro-
gram may transition from one state to another if and only if the necessary
transition is defined in the rules. When we add a big number of states, it
will undoubtedly become problematic. It will become tough to maintain
the code since every little change in transition logic may result in a change
in state conditionals in each method.

Solution Based on the State Pattern

Let’s have a look at the answer to the above-mentioned problem using
Radio as an example. The radio has two states in this country: AM and
FM. We may switch between these two states by using the switch. The state
approach advises that we construct a new class for each of an object’s
potential states and isolate all state-specific activities into these classes.
Rather than implementing all actions on its own, the initial object
named context keeps a reference to one of the state objects that reflects its
current state and assigns all state-related tasks to that object.

"""State class: Base State class"""
class State:

 """Base state. This is to share the functionality"""

 def scan(self):

 """Scan the dial to next station"""
 self.pos += 1

Appraisal ◾ 389

 """check for the last station"""
 if self.pos == len(self.stations):
 self.pos = 0
 print("Visiting... Station is {} {}".format(self.
stations[self.pos], self.name))

"""Separate Class for the AM state of the radio"""
class AmState(State):

 """constructor for the AM state class"""
 def __init__(self, radio):

 self.radio = radio
 self.stations = ["1250", "1380", "1510"]
 self.pos = 0
 self.name = "AM"

 """method for the toggling the state"""
 def toggle_amfm(self):
 print("Switching to FM")
 self.radio.state = self.radio.fmstate

"""Separate class for the FM state"""
class FmState(State):

 """Constriuctor for FM state"""
 def __init__(self, radio):
 self.radio = radio
 self.stations = ["82.3", "88.1", "103.9"]
 self.pos = 0
 self.name = "FM"

 """method for the toggling the state"""
 def toggle_amfm(self):
 print("Switching to AM")
 self.radio.state = self.radio.amstate

"""Dedicated class Radio"""
class Radio:

 """A radio. It has scan button, and AM / FM toggle
switch."""

 def __init__(self):

 """We have AM state and FM state"""
 self.fmstate = FmState(self)
 self.amstate = AmState(self)
 self.state = self.fmstate

390 ◾ Appraisal

Advantages

• Open/Closed Principle: We can simply add new states without
affecting the content of the client’s current states.

• Single Responsibility Principle: It aids in structuring the code of
certain states into distinct classes, making the code more accessible
to other developers.

• It also enhances cohesion since state-specific activities are aggre-
gated into ConcreteState classes, which are stored in a single location
in the code.

Disadvantages

• Making the System Complex: If a system just has a few states, using
the State Pattern is not a smart solution since you will wind up add-
ing unnecessary code.

• Changing States at Run-Time: The State Pattern is used when we
need to alter the state at run-time by inputting various subclasses.
This is also a drawback since we have distinct separate State classes
with some logic, but the number of classes rises.

 """method to toggle the switch"""
 def toggle_amfm(self):
 self.state.toggle_amfm()

 """method to scan """
 def scan(self):
 self.state.scan()

""" main-method """
if __name__ == "__main__":

 """ create radio object"""
 radio = Radio()
 actions = [radio.scan] * 3 + [radio.toggle_amfm] +
[radio.scan] * 3
 actions *= 2

 for action in actions:
 action()

Appraisal ◾ 391

• Subclass Dependencies: Each state-derived class is related to its sib-
ling, which establishes dependencies between subclasses directly or
indirectly.

Implementation of State Pattern in Java

• Step 1: Make a Connection interface that will connect to the
Controller class.

• Step 2: Make an Accounting class that complies with the Connection
interface.

//This is an interface.

public interface Connection {

 public void open();
 public void close();
 public void log();
 public void update();
}// End of the Connection interface.

//This is class.
public class Accounting implements Connection {

 @Override
 public void open() {
 System.out.println("open database for the
accounting");
 }
 @Override
 public void close() {
 System.out.println("close database");
 }

 @Override
 public void log() {
 System.out.println("log-activities");
 }

 @Override
 public void update() {
 System.out.println("Accounting has update");
 }
}// End of Accounting class.

392 ◾ Appraisal

• Step 3: Develop a Sales class that implements the Connection
interface.

• Step 4: Develop a Sales class that implements the Connection
interface.

//This is class.

public class Sales implements Connection {

 @Override
 public void open() {
 System.out.println("open database for the
sales");
 }
 @Override
 public void close() {
 System.out.println("close database");
 }

//This is class.
public class Sales implements Connection {

 @Override
 public void open() {
 System.out.println("open database for the
sales");
 }
 @Override
 public void close() {
 System.out.println("close database");
 }

 @Override
 public void log() {
 System.out.println("log-activities");
 }

 @Override
 public void update() {
 System.out.println("Sales has update");
 }

}// End of Sales class.

Appraisal ◾ 393

• Step 5: Make a Management class that complies with the Connection
interface.

 @Override
 public void log() {
 System.out.println("log-activities");
 }
 @Override
 public void update() {
 System.out.println("Sales has update");
 }
}// End of Sales class.

//This is class.

public class Management implements Connection {

 @Override
 public void open() {
 System.out.println("open database for the
Management");
 }
 @Override
 public void close() {
 System.out.println("close database");
 }

 @Override
 public void log() {
 System.out.println("log-activities");
 }

 @Override
 public void update() {
 System.out.println("Management has update");
 }

}
// End of Management class.

394 ◾ Appraisal

• Step 6: Create a Controller class that will connect to various sorts of
connections using the Connection interface.

//This is class.

public class Controller {

 public static Accounting acct;
 public static Sales sales;
 public static Management management;

 private static Connection con;

 Controller() {
 acct = new Accounting();
 sales = new Sales();
 management = new Management();
 }

 public void setAccountingConnection() {
 con = acct;
 }
 public void setSalesConnection() {
 con = sales;
 }
 public void setManagementConnection() {
 con = management;
 }
 public void open() {
 con .open();
 }
 public void close() {
 con .close();
 }
 public void log() {
 con .log();
 }
 public void update() {
 con .update();
 }

}// End of Controller class.

Appraisal ◾ 395

• Step 7: Make a class called StatePatternDemo.

State Pattern in C#

When an object’s internal state changes, the State Design Pattern allows it
to adapt its behavior. The item seems to change class.

C# Structural Code

This structured code exemplifies the State Pattern, which enables an
Account to act differently based on its balance. State objects termed
RedState, SilverState, and GoldState are responsible for the differences
in behavior. These states indicate checking accounts, new accounts, and
accounts in good standing.

//This is class.

public class StatePatternDemo {

 Controller controller;
 StatePatternDemo(String con) {
 controller = new Controller();
 //following trigger should made by the user
 if(con.equalsIgnoreCase("management"))
 controller.setManagementConnection();
 if(con.equalsIgnoreCase("sales"))
 controller.setSalesConnection();
 if(con.equalsIgnoreCase("accounting"))
 controller.setAccountingConnection();
 controller.open();
 controller.log();
 controller.close();
 controller.update();
 }

 public static void main(String args[]) {

 new StatePatternDemo(args[0]);

 }

}// End of StatePatternDemo class.

396 ◾ Appraisal

using System;

namespace State.Structural
{
 /// <summary> State Design Pattern
 /// </summary>

 public class Program
 {
 public static void Main(string[] args)
 {
 // Setup context in state

 var context = new Context(new
ConcreteStateA());

 // Issue requests, which toggles the state

 context.Request();
 context.Request();
 context.Request();
 context.Request();

 // Wait for the user

 Console.ReadKey();
 }
 }

 /// <summary> The 'State' abstract class
 /// </summary>

 public abstract class State
 {
 public abstract void Handle(Context context);
 }

 /// <summary> A 'ConcreteState' class
 /// </summary>

 public class ConcreteStateA : State
 {
 public override void Handle(Context context)
 {
 context.State = new ConcreteStateB();
 }
 }

Appraisal ◾ 397

Real-World C# Code

This real-world code exemplifies the State Pattern, which enables an
Account to act differently based on its balance. State objects termed
RedState, SilverState, and GoldState are responsible for the differences in

 /// <summary> A 'ConcreteState' class
 /// </summary>

 public class ConcreteStateB : State
 {
 public override void Handle(Context context)
 {
 context.State = new ConcreteStateA();
 }
 }

 /// <summary> The 'Context' class
 /// </summary>

 public class Context
 {
 State state;

 // Constructor

 public Context(State state)
 {
 this.State = state;
 }

 // Gets or sets state

 public State State
 {
 get { return state; }
 set
 {
 state = value;
 Console.WriteLine("State: " + state.
GetType().Name);
 }
 }

 public void Request()
 {
 state.Handle(this);
 }
 }
}

398 ◾ Appraisal

behavior. These states indicate checking accounts, new accounts, and
accounts in good standing.

using System;

namespace State.RealWorld
{
 /// <summary> State Design Pattern
 /// </summary>

 public class Program
 {
 public static void Main(string[] args)
 {
 // Open new account

 Account account = new Account
("Rim Johnsp");

 // Apply the financial transactions

 account.Deposit(600.0);
 account.Deposit(400.0);
 account.Deposit(650.0);
 account.PayInterest();
 account.Withdraw(3000.00);
 account.Withdraw(1400.00);

 // Wait for the user

 Console.ReadKey();
 }
 }

 /// <summary> The 'State' abstract class
 /// </summary>

 public abstract class State
 {
 protected Account account;
 protected double balance;

 protected double interest;
 protected double lowerLimit;
 protected double upperLimit;

 // Properties

Appraisal ◾ 399

 public Account Account
 {
 get { return account; }
 set { account = value; }
 }

 public double Balance
 {
 get { return balance; }
 set { balance = value; }
 }

 public abstract void Deposit(double amount);
 public abstract void Withdraw(double amount);
 public abstract void PayInterest();
 }

 /// <summary> 'ConcreteState' class
 /// <remarks> Red indicates that account is overdrawn
 /// </remarks> </summary>

 public class RedState : State
 {
 private double serviceFee;

 // Constructor

 public RedState(State state)
 {
 this.balance = state.Balance;
 this.account = state.Account;
 Initialize();
 }

 private void Initialize()
 {
 // Should come from datasource

 interest = 0.0;
 lowerLimit = -120.0;
 upperLimit = 0.0;
 serviceFee = 14.00;
 }

 public override void Deposit(double amount)
 {
 balance += amount;
 StateChangeCheck();
 }

400 ◾ Appraisal

 public override void Withdraw(double amount)
 {
 amount = amount - serviceFee;
 Console.WriteLine("No funds is available for
withdrawal!");
 }

 public override void PayInterest()
 {
 // No-interest is paid
 }

 private void StateChangeCheck()
 {
 if (balance > upperLimit)
 {
 account.State = new SilverState(this);
 }
 }
 }

 /// <summary> A 'ConcreteState' class
 /// <remarks>
 /// Silver indicates a non-interest bearing state </
remarks>
 /// </summary>

 public class SilverState : State
 {
 // Overloaded-constructors

 public SilverState(State state) :
 this(state.Balance, state.Account)
 {
 }

 public SilverState(double balance, Account account)
 {
 this.balance = balance;
 this.account = account;
 Initialize();
 }

 private void Initialize()
 {
 // Should come from datasource
 interest = 0.0;
 lowerLimit = 0.0;
 upperLimit = 1000.0;
 }

Appraisal ◾ 401

 public override void Deposit(double amount)
 {
 balance += amount;
 StateChangeCheck();
 }

 public override void Withdraw(double amount)
 {
 balance -= amount;
 StateChangeCheck();
 }

 public override void PayInterest()
 {
 balance += interest * balance;
 StateChangeCheck();
 }

 private void StateChangeCheck()
 {
 if (balance < lowerLimit)
 {
 account.State = new RedState(this);
 }
 else if (balance > upperLimit)
 {
 account.State = new GoldState(this);
 }
 }
 }

 /// <summary> A 'ConcreteState' class
 /// <remarks> Gold indicates an interest bearing state
 /// </remarks> </summary>

 public class GoldState : State
 {
 // Overloaded-constructors
 public GoldState(State state)
 : this(state.Balance, state.Account)
 {
 }

 public GoldState(double balance, Account account)
 {
 this.balance = balance;
 this.account = account;
 Initialize();
 }

402 ◾ Appraisal

 private void Initialize()
 {
 // Should come from database
 interest = 0.06;
 lowerLimit = 1400.0;
 upperLimit = 15000000.0;
 }

 public override void Deposit(double amount)
 {
 balance += amount;
 StateChangeCheck();
 }

 public override void Withdraw(double amount)
 {
 balance -= amount;
 StateChangeCheck();
 }

 public override void PayInterest()
 {
 balance += interest * balance;
 StateChangeCheck();
 }

 private void StateChangeCheck()
 {
 if (balance < 0.0)
 {
 account.State = new RedState(this);
 }
 else if (balance < lowerLimit)
 {
 account.State = new SilverState(this);
 }
 }
 }

 /// <summary> The 'Context' class
 /// </summary>

 public class Account
 {
 private State state;
 private string owner;

 // Constructor

Appraisal ◾ 403

 public Account(string owner)
 {
 // New accounts are 'Silver' by default
 this.owner = owner;
 this.state = new SilverState(0.0, this);
 }

 public double Balance
 {
 get { return state.Balance; }
 }

 public State State
 {
 get { return state; }
 set { state = value; }
 }

 public void Deposit(double amount)
 {
 state.Deposit(amount);
 Console.WriteLine("Deposited {0:C} -- ", amount);
 Console.WriteLine(" Balance = {0:C}", this.
Balance);
 Console.WriteLine(" Status = {0}",
 this.State.GetType().Name);
 Console.WriteLine("");
 }

 public void Withdraw(double amount)
 {
 state.Withdraw(amount);
 Console.WriteLine("Withdrew {0:C} -- ", amount);
 Console.WriteLine(" Balance = {0:C}", this.
Balance);
 Console.WriteLine(" Status = {0}\n",
 this.State.GetType().Name);
 }

 public void PayInterest()
 {
 state.PayInterest();
 Console.WriteLine("Interest Paid -- ");
 Console.WriteLine(" Balance = {0:C}", this.
Balance);
 Console.WriteLine(" Status = {0}\n",
 this.State.GetType().Name);
 }
 }
}

404 ◾ Appraisal

VISITOR PATTERN
The Visitor Pattern is a Behavioral Design Pattern that enables us to decou-
ple the algorithm from the object structure on which it works. It allows us
to dynamically add new features to an existing class hierarchy without
modifying it. All of the behavioral patterns have proven to be the most
effective ways to manage object communication. It is also utilized when we
need to conduct an operation on a set of related items.

A Visitor Pattern is made up of two parts:

• The visitor implements a method called Visit(), which is utilized and
invoked for each member of the data structure.

• Accept() methods on visitable classes accept visitors.

Components of Design

• Client: The Client class is the consumer of the Visitor Design Pattern
classes. It may get access to the data structure objects and direct them
to accept a visitor for future processing.

• Visitor: An abstract class that is used to specify all visitable classes’
visit operations.

• Concrete Visitor: Each Visitor will be in charge of several opera-
tions. All Visit Patterns described in the abstract visitor must be
implemented for each kind of visitor.

• This class declares that it accepts operations. It also serves as the
entrance point for visitors to visit an item.

• Visitable Concrete: These classes implement the visitable class and
describe the accepted operation. The accept operation is used to send
the visitor object to this object.

The Problem without Employing the Visitor Pattern

Assume we are in charge of PeeksforPeeks’ software management.
They have begun specific courses, such as DSA, SDE, and STL, that are
unquestionably valuable for students preparing for product-based firms.
However, how will we manage all of the Courses, Instructors, Students,
Classes, and IDs in your database? If we take a straightforward approach
to dealing with such a problem, we will almost certainly end up in
shambles.

Appraisal ◾ 405

Solution Based on the Visitor Pattern

Let’s have a look at the answer to the previously discussed problem. Instead
of mixing it with the current classes, the Visitor technique advises intro-
ducing a new behavior in a distinct class named Visitor. We will send the
original object as arguments to the visitor’s function, allowing the method
to access all relevant information.

""" The Courses hierarchy can't change to add new
 functionality dynamically. Abstract Crop class for the
 Concrete Courses_At_PFP classes: methods defined in
this class
 will inherit by all the Concrete Courses_At_PFP
classes."""

class Courses_At_PFP:

 def accept(self, visitor):
 visitor.visit(self)

 def teaching(self, visitor):
 print(self, "Taught by ", visitor)

 def studying(self, visitor):
 print(self, "studied by ", visitor)

 def __str__(self):
 return self.__class__.__name__

"""Concrete Courses_At_PFP class: Classes being visited."""
class SDE(Courses_At_PFP): pass

class STL(Courses_At_PFP): pass

class DSA(Courses_At_PFP): pass

""" Abstract Visitor class for the Concrete Visitor
classes:
 the method defined in this class will inherit by all
the Concrete Visitor classes."""
class Visitor:

 def __str__(self):
 return self.__class__.__name__

406 ◾ Appraisal

Advantages

• Open/Closed Principle: It is simple to provide new functionality in a
class that can deal with objects from various classes without modify-
ing these classes.

• The principle of single responsibility states that several variants of
the same activity may put into the same class.

• Entity Addition: Adding a new entity in the Visitor Pattern is simple
since we simply need to alter the visitor class and the existing item
will not be affected.

""" Concrete Visitors: Classes visiting the Concrete Course
objects.
 These classes have visit() method which is called by
 accept() method of Concrete Course_At_PFP classes."""
class Instructor(Visitor):
 def visit(self, crop):
 crop.teaching(self)

class Student(Visitor):
 def visit(self, crop):
 crop.studying(self)

"""creating objects for the concrete classes"""
sde = SDE()
stl = STL()
dsa = DSA()

"""Creating-Visitors"""
instructor = Instructor()
student = Student()

"""Visitors visiting the courses"""
sde.accept(instructor)
sde.accept(student)

stl.accept(instructor)
stl.accept(student)

dsa.accept(instructor)
dsa.accept(student)

Appraisal ◾ 407

• Updating Logic: If the operation logic is altered, we just need
to replace the visitor implementation rather than all of the item
classes.

Disadvantages

• Several Updates: We must notify each and every visitor anytime a
class is added or withdrawn from the main hierarchy.

• Extensibility: If there are too many visitor classes, it becomes quite
difficult to expand the whole interface of the class.

• Inadequate Access: Visitors may not always have access to the
private fields of certain classes with which they are meant to
work.

Applicability

• Recursive Structures: Visitor Pattern works well with recursive
structures such as directory trees and XML structures. The Visitor
object may visit each node in the recursive structure.

• Performing Operations: We may use the Visitor Pattern to execute
operations on all components of a complicated object, such as a
Tree.

Implementation of Visitor Pattern in Java

We’ll build a ComputerPart interface that defines accept operation.
Concrete classes that implement the ComputerPart interface include the
keyboard, mouse, monitor, and computer. We will design another inter-
face, ComputerPartVisitor, which will specify the operations of the visi-
tor class. The computer employs a certain visitor to do the appropriate
activity.

• Step 1: Define an interface to represent element.
Filename: ComputerPart.java

public interface ComputerPart {
 public void accept(ComputerPartVisitor
computerPartVisitor);
 }

408 ◾ Appraisal

• Step 2: Create concrete classes extending the above class.
Filename: Keyboard.java

Filename: Monitor.java

Filename: Mouse.java

Filename: Computer.java

public class Computer implements ComputerPart {

 ComputerPart[] parts;

public class Mouse implements ComputerPart {

 @Override
 public void accept(ComputerPartVisitor
computerPartVisitor) {
 computerPartVisitor.visit(this);
 }
}

public class Monitor implements ComputerPart {

 @Override
 public void accept(ComputerPartVisitor
computerPartVisitor) {
 computerPartVisitor.visit(this);
 }
 }

public class Keyboard implements ComputerPart {

 @Override
 public void accept(ComputerPartVisitor
computerPartVisitor) {
 computerPartVisitor.visit(this);
 }
 }

Appraisal ◾ 409

• Step 3: Define an interface to represent visitor.
Filename: ComputerPartVisitor.java

• Step 4: Create concrete visitor implementing the above class.
Filename: ComputerPartDisplayVisitor.java

public interface ComputerPartVisitor {
 public void visit(Computer computer);
 public void visit(Mouse mouse);
 public void visit(Keyboard keyboard);
 public void visit(Monitor monitor);
}

public class ComputerPartDisplayVisitor implements
ComputerPartVisitor {

 @Override
 public void visit(Computer computer) {
 System.out.println("Displaying Computer.");
 }

 @Override
 public void visit(Mouse mouse) {
 System.out.println("Displaying Mouse.");
 }

 public Computer(){
 parts = new ComputerPart[] {new Mouse(), new
Keyboard(), new Monitor()};
 }

 @Override
 public void accept(ComputerPartVisitor
computerPartVisitor) {
 for (int x = 0; x < parts.length; x++) {
 parts[x].accept(computerPartVisitor);
 }
 computerPartVisitor.visit(this);
 }
}

410 ◾ Appraisal

• Step 5: Use the ComputerPartDisplayVisitor to display parts of
Computer.

Filename: VisitorPatternDemo.java

Visitor Pattern in C#

The Visitor Design Pattern depicts an operation on the elements of an
object structure. This pattern allows us to specify a new operation while
keeping the classes of the components on which it works the same.

C# Structural Code

This structural code exemplifies the Visitor Pattern, in which an object
traverses an object structure and executes the same operation on each
node. Different visitor objects define distinct operations.

using System;
using System.Collections.Generic;

namespace Visitor.Structural
{

public class VisitorPatternDemo {
 public static void main(String[] args) {

 ComputerPart computer = new Computer();
 computer.accept(new
ComputerPartDisplayVisitor());
 }
 }

 @Override
 public void visit(Keyboard keyboard) {
 System.out.println("Displaying Keyboard.");
 }

 @Override
 public void visit(Monitor monitor) {
 System.out.println("Displaying Monitor.");
 }
 }

Appraisal ◾ 411

 /// <summary> Visitor Design Pattern
 /// </summary>

 public class Program
 {
 public static void Main(string[] args)
 {
 // Setup structure

 ObjectStructure or = new ObjectStructure();
 or.Attach(new ConcreteElementA());
 or.Attach(new ConcreteElementB());

 // Create the visitor objects

 ConcreteVisitor1 v1 = new ConcreteVisitor1();
 ConcreteVisitor2 v2 = new ConcreteVisitor2();

 // Structure accepting visitors

 or.Accept(v1);
 or.Accept(v2);

 // Wait for the user

 Console.ReadKey();
 }
 }

 /// <summary> The 'Visitor' abstract class
 /// </summary>

 public abstract class Visitor
 {
 public abstract void VisitConcreteElementA(
 ConcreteElementA concreteElementA);
 public abstract void VisitConcreteElementB(
 ConcreteElementB concreteElementB);
 }

 /// <summary> A 'ConcreteVisitor' class
 /// </summary>

 public class ConcreteVisitor1 : Visitor
 {
 public override void VisitConcreteElementA(
 ConcreteElementA concreteElementA)
 {

412 ◾ Appraisal

 Console.WriteLine("{0} visited by {1}",
 concreteElementA.GetType().Name, this.
GetType().Name);
 }

 public override void VisitConcreteElementB(
 ConcreteElementB concreteElementB)
 {
 Console.WriteLine("{0} visited by {1}",
 concreteElementB.GetType().Name, this.
GetType().Name);
 }
 }

 /// <summary> A 'ConcreteVisitor' class
 /// </summary>

 public class ConcreteVisitor2 : Visitor
 {
 public override void VisitConcreteElementA(
 ConcreteElementA concreteElementA)
 {
 Console.WriteLine("{0} visited by {1}",
 concreteElementA.GetType().Name, this.
GetType().Name);
 }

 public override void VisitConcreteElementB(
 ConcreteElementB concreteElementB)
 {
 Console.WriteLine("{0} visited by {1}",
 concreteElementB.GetType().Name, this.
GetType().Name);
 }
 }

 /// <summary> The 'Element' abstract class
 /// </summary>

 public abstract class Element
 {
 public abstract void Accept(Visitor visitor);
 }

 /// <summary> A 'ConcreteElement' class
 /// </summary>

 public class ConcreteElementA : Element

Appraisal ◾ 413

 {
 public override void Accept(Visitor visitor)
 {
 visitor.VisitConcreteElementA(this);
 }

 public void OperationA()
 {
 }
 }

 /// <summary> A 'ConcreteElement' class
 /// </summary>

 public class ConcreteElementB : Element
 {
 public override void Accept(Visitor visitor)
 {
 visitor.VisitConcreteElementB(this);
 }

 public void OperationB()
 {
 }
 }

 /// <summary> The 'ObjectStructure' class
 /// </summary>

 public class ObjectStructure
 {
 List<Element> elements = new List<Element>();

 public void Attach(Element element)
 {
 elements.Add(element);
 }

 public void Detach(Element element)
 {
 elements.Remove(element);
 }

 public void Accept(Visitor visitor)
 {
 foreach (Element element in elements)
 {
 element.Accept(visitor);
 }
 }
 }
}

414 ◾ Appraisal

Real-World C# Code

The Visitor Pattern is demonstrated in this real-world code, in which two
objects scan a list of Employees and execute an identical operation on each
Employee. The two visitor objects specify two distinct operations: one that
changes vacation days and the other that calculates revenue.

using System;
using System.Collections.Generic;

namespace Visitor.RealWorld
{
 /// <summary> Visitor Design Pattern
 /// </summary>

 public class Program
 {
 public static void Main(string[] args)
 {
 // Setup employee-collection

 Employees employee = new Employees();
 employee.Attach(new Clerk());
 employee.Attach(new Director());
 employee.Attach(new President());

 // Employees 'visited'

 employee.Accept(new IncomeVisitor());
 employee.Accept(new VacationVisitor());

 // Wait for the user

 Console.ReadKey();
 }
 }

 /// <summary> The 'Visitor' interface
 /// </summary>

 public interface IVisitor
 {
 void Visit(Element element);
 }

 /// <summary> A 'ConcreteVisitor' class
 /// </summary>

Appraisal ◾ 415

 public class IncomeVisitor : IVisitor
 {
 public void Visit(Element element)
 {
 Employee employee = element as Employee;

 // Provide the 10% pay raise

 employee.Income *= 1.10;

 Console.WriteLine("{0} {1}'s new
income: {2:C}",
 employee.GetType().Name, employee.Name,
 employee.Income);
 }
 }

 /// <summary> A 'ConcreteVisitor' class
 /// </summary>

 public class VacationVisitor : IVisitor
 {
 public void Visit(Element element)
 {
 Employee employee = element as Employee;

 // Provide 3 extra vacation days

 employee.VacationDays += 3;

 Console.WriteLine("{0} {1}'s new vacation days:
{2}",
 employee.GetType().Name, employee.Name,
 employee.VacationDays);
 }
 }

 /// <summary> The 'Element' abstract class
 /// </summary>

 public abstract class Element
 {
 public abstract void Accept(IVisitor visitor);
 }

 /// <summary> The 'ConcreteElement' class
 /// </summary>

416 ◾ Appraisal

 public class Employee : Element
 {
 private string name;
 private double income;
 private int vacationDays;

 // Constructor

 public Employee(string name, double income,
 int vacationDays)
 {
 this.name = name;
 this.income = income;
 this.vacationDays = vacationDays;
 }

 public string Name
 {
 get { return name; }
 set { name = value; }
 }

 public double Income
 {
 get { return income; }
 set { income = value; }
 }

 public int VacationDays
 {
 get { return vacationDays; }
 set { vacationDays = value; }
 }

 public override void Accept(IVisitor visitor)
 {
 visitor.Visit(this);
 }
 }

 /// <summary> The 'ObjectStructure' class
 /// </summary>

 public class Employees
 {
 private List<Employee> employees = new
List<Employee>();

Appraisal ◾ 417

 public void Attach(Employee employee)
 {
 employees.Add(employee);
 }

 public void Detach(Employee employee)
 {
 employees.Remove(employee);
 }

 public void Accept(IVisitor visitor)
 {
 foreach (Employee employee in employees)
 {
 employee.Accept(visitor);
 }
 Console.WriteLine();
 }
 }

 // Three-employee types

 public class Clerk : Employee
 {
 // Constructor

 public Clerk()
 : base("Kevin", 26000.0, 14)
 {
 }
 }

 public class Director : Employee
 {
 // Constructor
 public Director()
 : base("Elly", 39000.0, 16)
 {
 }
 }

 public class President : Employee
 {
 // Constructor
 public President()
 : base("Eric", 49000.0, 21)
 {
 }
 }
}

https://taylorandfrancis.com

419

Bibliography

Alle, M. (2021, May 3). Singleton Design Pattern In C#. Singleton Design
Pattern In C#; www.c-sharpcorner.com. https://www.c-sharpcorner.com/
UploadFile/8911c4/singleton-design-pattern-in-C-Sharp/

Baeldung. (2019, September 11). Composite Design Pattern in Java. Composite
Design Pattern in Java. https://www.baeldung.com/java-composite-pattern#:
~:text=The%20composite%20pattern%20is%20meant,a%20whole%20
hierarchy%20of%20objects

Baeldung. (2019, November 10). Proxy, Decorator, Adapter and Bridge Patterns.
Proxy, Decorator, Adapter and Bridge Patterns. https://www.baeldung.com/
java-structural-design-patterns#:~:text=Adapter%20pattern%20is%20
used%20after,before%20the%20components%20are%20designed

Baeldung. (2022, June 7). The Adapter Pattern in Java. The Adapter Pattern in
Java. https://www.baeldung.com/java-adapter-pattern

Balasubramaniam, Vivek. (2022, June 24). Prototype Pattern in Java. Prototype
Pattern in Java. https://www.baeldung.com/java-pattern-prototype

Bradley, S. (2021, October 20). Visitor Pattern. Medium; medium.com. https://
medium.com/design-patterns-in-python/visitor-pattern-b9227759d6be

Bradley, S. (2022, April 18). Observer Pattern. Medium; medium.com. https://
medium.com/design-patterns-in-python/observer-pattern-c58820ad3c9f

Bradley, S. (n.d.). Composite – Design Patterns in Python. Composite – Design
Patterns in Python; sbcode.net. Retrieved July 9, 2022, from https://sbcode.
net/python/composite/

Bradley, S. (n.d.). State – Design Patterns in Python. State – Design Patterns in
Python; sbcode.net. Retrieved July 9, 2022, from https://sbcode.net/python/
state/

C# Adapter Design Pattern – Dofactory. (n.d.). C# Adapter Design Pattern –
Dofactory; www.dofactory.com. Retrieved July 9, 2022, from https://www.
dofactory.com/net/adapter-design-pattern

C# Prototype Design Pattern – Dofactory. (n.d.). C# Prototype Design Pattern –
Dofactory; www.dofactory.com. Retrieved July 9, 2022, from https://www.
dofactory.com/net/prototype-design-pattern

C# State Design Pattern – Dofactory. (n.d.). C# State Design Pattern – Dofactory;
www.dofactory.com. Retrieved July 9, 2022, from https://www.dofactory.
com/net/state-design-pattern

https://www.c-sharpcorner.com
https://www.c-sharpcorner.com
https://www.c-sharpcorner.com
https://www.baeldung.com
https://www.baeldung.com
https://www.baeldung.com
https://www.baeldung.com
https://www.baeldung.com
https://medium.com
https://medium.com
https://medium.com
https://medium.com
https://sbcode.net
https://sbcode.net
https://sbcode.net
https://sbcode.net
https://www.dofactory.com
https://www.dofactory.com
https://www.dofactory.com
https://www.dofactory.com
https://www.dofactory.com
https://www.dofactory.com
https://www.dofactory.com
https://www.dofactory.com
https://www.dofactory.com
https://www.baeldung.com
https://www.baeldung.com
https://medium.com
https://medium.com

420 ◾ Bibliography

Chauhan, S. (2001, July 8). Bridge Design Pattern – C#. Bridge Design Pattern – C#;
www.dotnettricks.com. https://www.dotnettricks.com/learn/designpatterns/
bridge-design-pattern-dotnet

Chauhan, S. (2001, July 8). Factory Method Design Pattern – C#. Factory Method
Design Pattern – C#; www.dotnettricks.com. https://www.dotnettricks.
com/learn/designpatterns/factory-method-design-pattern-dotnet

Creational Design Patterns – Javatpoint. (n.d.). Www.Javatpoint.Com; www.
javatpoint.com. Retrieved July 9, 2022, from https://www.javatpoint.com/
creational-design-patterns

Design Pattern – Overview. (n.d.). Design Pattern – Overview; www.tutorial-
spoint.com. Retrieved July 9, 2022, from https://www.tutorialspoint.com/
design_pattern/design_pattern_overview.htm

Design Pattern – Singleton Pattern. (n.d.). Design Pattern – Singleton Pattern;
www.tutorialspoint.com. Retrieved July 9, 2022, from https://www.tutorial-
spoint.com/design_pattern/singleton_pattern.htm

Design Patterns – Bridge Pattern. (n.d.). Design Patterns – Bridge Pattern; www.
tutorialspoint.com. Retrieved July 9, 2022, from https://www.tutorialspoint.
com/design_pattern/bridge_pattern.htm

Design Patterns – Facade Pattern. (n.d.). Design Patterns – Facade Pattern; www.
tutorialspoint.com. Retrieved July 9, 2022, from https://www.tutorialspoint.
com/design_pattern/facade_pattern.htm

Design Patterns – Iterator Pattern. (n.d.). Design Patterns – Iterator Pattern; www.
tutorialspoint.com. Retrieved July 9, 2022, from https://www.tutorialspoint.
com/design_pattern/iterator_pattern.htm#:~:text=Iterator%20pattern%20
is%20very%20commonly,falls%20under%20behavioral%20pattern%20
category

Design Patterns – Visitor Pattern. (n.d.). Design Patterns – Visitor Pattern; www.
tutorialspoint.com. Retrieved July 9, 2022, from https://www.tutorialspoint.
com/design_pattern/visitor_pattern.htm

Design Patterns and Refactoring. (n.d.). Adapter Design Pattern; source-
making.com. Retrieved July 9, 2022, from https://sourcemaking.com/
design_patterns/adapter

Design Patterns and Refactoring. (n.d.). Behavioral Patterns; sourcemaking.com.
Retrieved July 9, 2022, from https://sourcemaking.com/design_patterns/
behavioral_patterns

Design Patterns and Refactoring. (n.d.). Composite Design Pattern in Python;
sourcemaking.com. Retrieved July 9, 2022, from https://sourcemaking.
com/design_patterns/composite/python/1

Design Patterns and Refactoring. (n.d.). Creational Patterns; sourcemaking.com.
Retrieved July 9, 2022, from https://sourcemaking.com/design_patterns/
creational_patterns

Design Patterns and Refactoring. (n.d.). Design Patterns; sourcemaking.com.
Retrieved July 9, 2022, from https://sourcemaking.com/design_patterns

Design Patterns and Refactoring. (n.d.). Facade Design Pattern; sourcemak-
ing.com. Retrieved July 9, 2022, from https://sourcemaking.com/
design_patterns/facade

https://www.dotnettricks.com
https://www.dotnettricks.com
https://www.dotnettricks.com
https://www.dotnettricks.com
https://www.dotnettricks.com
https://www.dotnettricks.com
https://Www.Javatpoint.Com
https://www.javatpoint.com
https://www.javatpoint.com
https://www.javatpoint.com
https://www.javatpoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://sourcemaking.com
https://sourcemaking.com
https://sourcemaking.com
https://sourcemaking.com
https://sourcemaking.com
https://sourcemaking.com
https://sourcemaking.com
https://sourcemaking.com
https://sourcemaking.com
https://sourcemaking.com
https://sourcemaking.com
https://sourcemaking.com
https://sourcemaking.com
https://sourcemaking.com
https://sourcemaking.com
https://sourcemaking.com
https://sourcemaking.com
https://sourcemaking.com
https://sourcemaking.com

Bibliography ◾ 421

Design Patterns and Refactoring. (n.d.). Iterator Design Pattern in Python;
sourcemaking.com. Retrieved July 9, 2022, from https://sourcemaking.
com/design_patterns/iterator/python/1

Design Patterns and Refactoring. (n.d.). Singleton Design Pattern; source-
making.com. Retrieved July 9, 2022, from https://sourcemaking.com/
design_patterns/singleton

Design Patterns and Refactoring. (n.d.). Template Method Design Pattern in
Python; sourcemaking.com. Retrieved July 9, 2022, from https://source-
making.com/design_patterns/template_method/python/1

Design Patterns in Java – Javatpoint. (n.d.). www.javatpoint.Com; www.javat-
point.com. Retrieved July 9, 2022, from https://www.javatpoint.com/design-
patterns-in-java#:~:text=But%20remember%20one%2Dthing%2C%20
design,more%20flexible%2C%20reusable%20and%20maintainable

Design Patterns Tutorial => Bridge pattern implementation in java. (n.d.). Design
Patterns Tutorial => Bridge Pattern Implementation in Java; riptutorial.
com. Retrieved July 9, 2022, from https://riptutorial.com/design-patterns/
example/14007/bridge-pattern-implementation-in-java

Design Patterns Tutorial => Chain of Responsibility example (Php). (n.d.). Design
Patterns Tutorial => Chain of Responsibility Example (Php); riptutorial.
com. Retrieved July 9, 2022, from https://riptutorial.com/design-patterns/
example/21215/chain-of-responsibility-example--php-

Design Patterns Tutorial => Command pattern example in Java. (n.d.). Design
Patterns Tutorial => Command Pattern Example in Java; riptutorial.
com. Retrieved July 9, 2022, from https://riptutorial.com/design-patterns/
example/8933/command-pattern-example-in-java

Design Patterns Tutorial => Decorator pattern. (n.d.). Design Patterns Tutorial
=> Decorator Pattern; riptutorial.com. Retrieved July 9, 2022, from https://
riptutorial.com/design-patterns/topic/1720/decorator-pattern

Design Patterns Tutorial => Flyweight Factory (C#). (n.d.). Design Patterns Tutorial
=> Flyweight Factory (C#); riptutorial.com. Retrieved July 9, 2022, from
https://riptutorial.com/design-patterns/example/14128/flyweight-factory--
csharp-

Design Patterns Tutorial => Flyweight Factory (C#). (n.d.). Design Patterns Tutorial
=> Flyweight Factory (C#); riptutorial.com. Retrieved July 9, 2022, from
https://riptutorial.com/design-patterns/example/14128/flyweight-factory--
csharp-

Design Patterns Tutorial => Flyweight Factory (C#). (n.d.). Design Patterns Tutorial
=> Flyweight Factory (C#); riptutorial.com. Retrieved July 9, 2022, from https://
riptutorial.com/design-patterns/example/14128/flyweight-factory--csharp-

Design Patterns Tutorial => Getting started with Design Patterns. (n.d.). Design
Patterns Tutorial => Getting Started with Design Patterns; riptutorial.com.
Retrieved July 9, 2022, from https://riptutorial.com/design-patterns

Design Patterns Tutorial => Lazy Singleton practical example in java. (n.d.). Design
Patterns Tutorial => Lazy Singleton Practical Example in Java; riptutorial.
com. Retrieved July 9, 2022, from https://riptutorial.com/design-patterns/
example/20847/lazy-singleton-practical-example-in-java

https://sourcemaking.com
https://sourcemaking.com
https://sourcemaking.com
https://sourcemaking.com
https://sourcemaking.com
https://sourcemaking.com
https://www.javatpoint.Com
https://www.javatpoint.com
https://www.javatpoint.com
https://www.javatpoint.com
https://www.javatpoint.com
https://www.javatpoint.com
https://riptutorial.com
https://riptutorial.com
https://riptutorial.com
https://riptutorial.com
https://riptutorial.com
https://riptutorial.com
https://riptutorial.com
https://riptutorial.com
https://riptutorial.com
https://riptutorial.com
https://riptutorial.com
https://riptutorial.com
https://riptutorial.com
https://riptutorial.com
https://riptutorial.com
https://riptutorial.com
https://riptutorial.com
https://riptutorial.com
https://sourcemaking.com
https://sourcemaking.com
https://sourcemaking.com
https://sourcemaking.com
https://riptutorial.com
https://riptutorial.com
https://riptutorial.com
https://riptutorial.com
https://riptutorial.com
https://riptutorial.com
https://riptutorial.com
https://riptutorial.com
https://riptutorial.com
https://riptutorial.com
https://riptutorial.com
https://riptutorial.com

422 ◾ Bibliography

Design Patterns Tutorial => Mediator pattern example in java. (n.d.). Design
Patterns Tutorial => Mediator Pattern Example in Java; riptutorial.com.
Retrieved July 9, 2022, from https://riptutorial.com/design-patterns/
example/21456/mediator-pattern-example-in-java

Design Patterns Tutorial => Observer/Java. (n.d.). Design Patterns Tutorial =>
Observer/Java; riptutorial.com. Retrieved July 9, 2022, from https://riptuto-
rial.com/design-patterns/example/10889/observer---java

Design Patterns Tutorial => Repository Pattern. (n.d.). Design Patterns Tutorial
=> Repository Pattern; riptutorial.com. Retrieved July 9, 2022, from https://
riptutorial.com/design-patterns/topic/6254/repository-pattern

Design Patterns Tutorial => The Iterator Pattern. (n.d.). Design Patterns Tutorial
=> The Iterator Pattern; riptutorial.com. Retrieved July 9, 2022, from https://
riptutorial.com/design-patterns/example/6420/the-iterator-pattern

Design Patterns. (n.d.). Design Patterns; refactoring.guru. Retrieved July 9, 2022,
from https://refactoring.guru/design-patterns

Design Patterns: Adapter in C#. (n.d.). Design Patterns: Adapter in C#; refactoring.
guru. Retrieved July 9, 2022, from https://refactoring.guru/design-patterns/
adapter/csharp/example#:~:text=Adapter%20is%20a%20structural%20
design,recognizable%20by%20the%20second%20object

Design Patterns: Bridge in Java. (n.d.). Design Patterns: Bridge in Java; refac-
toring.guru. Retrieved July 9, 2022, from https://refactoring.guru/design-
patterns/bridge/java/example#:~:text=Bridge%20is%20a%20structural%20
design,the%20second%20hierarchy%20(Implementation)

Design Patterns: Factory Method in C#. (n.d.). Design Patterns: Factory Method in
C#; refactoring.guru. Retrieved July 9, 2022, from https://refactoring.guru/
design-patterns/factory-method/csharp/example#:~:text=Factory%20
method%20is%20a%20creational,constructor%20call%20(%20new%20
operator)

Design Patterns: Flyweight in Python. (n.d.). Design Patterns: Flyweight in Python;
refactoring.guru. Retrieved July 9, 2022, from https://refactoring.guru/
design-patterns/f lyweight/python/example#:~:text=Flyweight%20is%20
a%20structural%20design,object%20state%20between%20multiple%20
objects

Design Patterns: Memento in Java. (n.d.). Design Patterns: Memento in Java;
refactoring.guru. Retrieved July 9, 2022, from https://refactoring.guru/
design-patterns/memento/java/example#:~:text=Memento%20is%20a%20
behavioral%20design,data%20kept%20inside%20the%20snapshots

Design Patterns: Observer in Python. (n.d.). Design Patterns: Observer in Python;
refactoring.guru. Retrieved July 9, 2022, from https://refactoring.guru/
design-patterns/observer/python/example#:~:text=Observer%20is%20
a%20behavioral%20design,that%20implements%20a%20subscriber%20
interface

Design Patterns: Prototype in Java. (n.d.). Design Patterns: Prototype in Java;
refactoring.guru. Retrieved July 9, 2022, from https://refactoring.guru/
design-patterns/prototype/java/example#:~:text=Prototype%20is%20a%20
creational%20design,their%20concrete%20classes%20are%20unknown

https://riptutorial.com
https://riptutorial.com
https://riptutorial.com
https://riptutorial.com
https://riptutorial.com
https://riptutorial.com
https://riptutorial.com
https://riptutorial.com
https://refactoring.guru
https://refactoring.guru
https://refactoring.guru
https://refactoring.guru
https://refactoring.guru
https://refactoring.guru
https://refactoring.guru
https://refactoring.guru
https://refactoring.guru
https://refactoring.guru
https://refactoring.guru
https://refactoring.guru
https://refactoring.guru
https://refactoring.guru
https://refactoring.guru
https://refactoring.guru
https://refactoring.guru
https://refactoring.guru
https://refactoring.guru
https://refactoring.guru
https://refactoring.guru
https://refactoring.guru
https://refactoring.guru
https://refactoring.guru
https://refactoring.guru
https://riptutorial.com
https://riptutorial.com
https://riptutorial.com
https://refactoring.guru
https://refactoring.guru
https://refactoring.guru
https://refactoring.guru
https://refactoring.guru
https://refactoring.guru
https://refactoring.guru
https://refactoring.guru

Bibliography ◾ 423

Design Patterns: State in Python. (n.d.). Design Patterns: State in Python; refac-
toring.guru. Retrieved July 9, 2022, from https://refactoring.guru/design-
patterns/state/python/example#:~:text=State%20is%20a%20behavioral%20
design,of%20acting%20on%20its%20own

Design Patterns: Visitor in C#. (n.d.). Design Patterns: Visitor in C#; refactoring.
guru. Retrieved July 9, 2022, from https://refactoring.guru/design-patterns/
visitor/csharp/example#:~:text=Visitor%20is%20a%20behavioral%20
design,article%20Visitor%20and%20Double%20Dispatch

designpatterns. (n.d.). Designpatterns; cs.lmu.edu. Retrieved July 9, 2022, from
https://cs.lmu.edu/~ray/notes/designpatterns/

devs5003. (2021, June 13). Creational Design Patterns In Java | Making Java
Easy To Learn. Making Java Easy to Learn; javatechonline.com. https://
javatechonline.com/creational-design-patterns-in-java/

Elisabeth Robson, E. F. (2016, October 12). 5 reasons to finally learn design patterns –
O’Reilly. 5 Reasons to Finally Learn Design Patterns; www.oreilly.com. https://
www.oreilly.com/content/5-reasons-to-finally-learn-design-patterns/

Factory Design Pattern in Java – JournalDev. (2013, May 22). JournalDev; www.
journaldev.com. https://www.journaldev.com/1392/factory-design-pattern-
in-java

Flyweight Method – Python Design Patterns – GeeksforGeeks. (2020, February 9).
GeeksforGeeks; www.geeksforgeeks.org. https://www.geeksforgeeks.org/
flyweight-method-python-design-patterns/

Goals of Design Patterns (OO, Patterns, UML and Refactoring forum at Coderanch).
(n.d.). Goals of Design Patterns (OO, Patterns, UML and Refactoring
Forum at Coderanch); coderanch.com. Retrieved July 9, 2022, from https://
coderanch.com/t/99290/engineering/Goals-Design-Patterns

Gupta, L. (2014, May 9). Builder Design Pattern – HowToDoInJava.
HowToDoInJava; howtodoinjava.com. https://howtodoinjava.com/design-
patterns/creational/builder-pattern-in-java/

Gupta, L. (2015, October 19). Composite Design Pattern – HowToDoInJava.
HowToDoInJava; howtodoinjava.com. https://howtodoinjava.com/design-
patterns/structural/composite-design-pattern/

Gupta, L. (2018, December 13). Flyweight Design Pattern – Flyweight Pattern
in Java- HowToDoInJava. HowToDoInJava; howtodoinjava.com. https://
howtodoinjava.com/design-patterns/structural/flyweight-design-pattern/

Gupta, L. (2018, December 13). Flyweight Design Pattern – Flyweight Pattern
in Java- HowToDoInJava. HowToDoInJava; howtodoinjava.com. https://
howtodoinjava.com/design-patterns/structural/flyweight-design-pattern/

Gupta, L. (2018, December 17). Iterator Design Pattern – Iterator Pattern in Java –
HowToDoInJava. HowToDoInJava; howtodoinjava.com. https://howtodoin-
java.com/design-patterns/behavioral/iterator-design-pattern/

Gupta, L. (2019, January 23). State Design Pattern – State Pattern in Java –
HowToDoInJava. HowToDoInJava; howtodoinjava.com. https://howtodoin-
java.com/design-patterns/behavioral/state-design-pattern/

Gupta, L. (2019, March 6). Design Patterns in Java. HowToDoInJava; howtodoinjava
.com. https://howtodoinjava.com/gang-of-four-java-design-patterns/

https://refactoring.guru
https://refactoring.guru
https://refactoring.guru
https://refactoring.guru
https://refactoring.guru
https://refactoring.guru
https://cs.lmu.edu
https://javatechonline.com
https://javatechonline.com
https://www.oreilly.com
https://www.oreilly.com
https://www.oreilly.com
https://www.journaldev.com
https://www.journaldev.com
https://www.journaldev.com
https://www.journaldev.com
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://coderanch.com
https://coderanch.com
https://howtodoinjava.com
https://howtodoinjava.com
https://howtodoinjava.com
https://howtodoinjava.com
https://howtodoinjava.com
https://howtodoinjava.com
https://howtodoinjava.com
https://howtodoinjava.com
https://howtodoinjava.com
https://howtodoinjava.com
https://howtodoinjava.com
https://howtodoinjava.com
https://howtodoinjava.com
https://howtodoinjava.com
https://howtodoinjava.com
https://howtodoinjava.com
https://howtodoinjava.com
https://howtodoinjava.com
https://howtodoinjava.com
https://howtodoinjava.com
https://howtodoinjava.com
https://cs.lmu.edu
https://javatechonline.com
https://coderanch.com

424 ◾ Bibliography

Hurtado, J. (2021, June 2). Template Method Design Pattern in Python. Stack
Abuse; stackabuse.com. https://stackabuse.com/template-method-design-
pattern-in-python/

Implementing the Singleton Pattern in C#. (n.d.). Implementing the Singleton
Pattern in C#; csharpindepth.com. Retrieved July 9, 2022, from https://
csharpindepth.com/articles/singleton

Iterator Design Pattern in Java – JournalDev. (2013, July 26). JournalDev;
www.journaldev.com. https://www.journaldev.com/1716/iterator-design-
pattern-java

Jarmuż, B. (2022, February 8). Visitor Design Pattern in C# – Code Maze. Code Maze;
code-maze.com. https://code-maze.com/csharp-visitor-design-pattern/

Java Singleton Design Pattern Example Best Practices – JournalDev. (2013, March
3). JournalDev; www.journaldev.com. https://www.journaldev.com/1377/
java-singleton-design-pattern-best-practices-examples

javinpaul. (2022, January 27). 11 Essential Skills to become Software Developer in
2022 | by javinpaul | Javarevisited | Medium. Medium; medium.com. https://
medium.com/javarevisited/11-essential-skills-to-become-software-devel-
oper-in-2020-c617e293e90e

Jones, M. (2016, June 13). Observer Pattern in C#. Exception Not Found;
exceptionnotfound.net. https://exceptionnotfound.net/observer-pattern-in-
csharp/

Jones, M. (2016, June 9). Template Method Pattern in C#. Exception Not Found;
exceptionnotfound.net. https://exceptionnotfound.net/template-method-
pattern-in-csharp/

Kanjilal, J. (2017, June 5). How to implement the template method Design Pattern
in C# | InfoWorld. InfoWorld; www.infoworld.com. https://www.infoworld.
com/article/3199484/how-to-implement-the-template-method-design-pat-
tern-in-c.html

Kiran, R. (2019, July 11). Important Java Design Patterns You Need to Know
About | Edureka. Edureka; www.edureka.co. https://www.edureka.co/blog/
java-design-patterns/

Kumar, S. (2016, May 3). Adapter Pattern – GeeksforGeeks. GeeksforGeeks; www.
geeksforgeeks.org. https://www.geeksforgeeks.org/adapter-pattern/

M, N. (2020, December 26). Composite Design Pattern Using Python. Composite
Design Pattern Using Python; www.c-sharpcorner.com. https://www.c-
sharpcorner.com/article/composite-design-pattern-using-python/

Maheshwari, B. (2021, February 20). Adapter Pattern — What It Is and How to Use It?
Medium; medium.com. https://medium.com/swlh/adapter-pattern-what-it-
is-and-how-to-use-it-83e35a02e7f9#:~:text=The%20adapter%20pattern%20
convert%20the,another%20interface%20the%20clients%20expect

Mallik, U. (2020, April 24). The Bridge Design Pattern with Python. Stack
Abuse; stackabuse.com. https://stackabuse.com/the-bridge-design-pattern-in-
python/

Memento Method – Python Design Patterns – GeeksforGeeks. (2020, February 18).
GeeksforGeeks; www.geeksforgeeks.org. https://www.geeksforgeeks.org/
memento-method-python-design-patterns/

https://stackabuse.com
https://stackabuse.com
https://csharpindepth.com
https://csharpindepth.com
https://www.journaldev.com
https://www.journaldev.com
https://www.journaldev.com
https://code-maze.com
https://www.journaldev.com
https://www.journaldev.com
https://www.journaldev.com
https://medium.com
https://medium.com
https://medium.com
https://exceptionnotfound.net
https://exceptionnotfound.net
https://exceptionnotfound.net
https://exceptionnotfound.net
https://www.infoworld.com
https://www.infoworld.com
https://www.infoworld.com
https://www.infoworld.com
https://www.edureka.co
https://www.edureka.co
https://www.edureka.co
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.c-sharpcorner.com
https://www.c-sharpcorner.com
https://www.c-sharpcorner.com
https://medium.com
https://medium.com
https://medium.com
https://stackabuse.com
https://stackabuse.com
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://stackabuse.com
https://csharpindepth.com
https://code-maze.com
https://medium.com
https://exceptionnotfound.net
https://exceptionnotfound.net
https://medium.com
https://stackabuse.com

Bibliography ◾ 425

Omprakash. (n.d.). Bridge Design Pattern with Python. Bridge Design Pattern
with Python; pythonwife.com. Retrieved July 9, 2022, from https://
pythonwife.com/bridge-design-pattern-with-python/

Omprakash. (n.d.). Iterator Design Pattern with Python. Iterator Design Pattern
with Python; pythonwife.com. Retrieved July 9, 2022, from https://
pythonwife.com/iterator-design-pattern-with-python/

oodesign. (n.d.). Singleton Pattern | Object Oriented Design. Singleton Pattern |
Object Oriented Design; www.oodesign.com. Retrieved July 9, 2022, from
https://www.oodesign.com/singleton-pattern

Pankaj. (2013, March 3). Java Singleton Design Pattern Example Best Practices
– JournalDev. JournalDev; www.journaldev.com. https://www.journaldev.
com/1377/java-singleton-design-pattern-best-practices-examples

Pankaj. (2013, May 22). Factory Design Pattern in Java – JournalDev.
JournalDev; www.journaldev.com. https://www.journaldev.com/1392/
factory-design-pattern-in-java

Pankaj. (2013, June 20). Builder Design Pattern in Java – JournalDev. JournalDev;
www.journaldev.com. https://www.journaldev.com/1425/builder-design-
pattern-in-java

Paul, J. (2019, March 31). Observer Design Pattern in C#. Observer Design
Pattern in C#; www.c-sharpcorner.com. https://www.c-sharpcorner.com/
uploadfile/40e97e/observer-design-pattern-in-C-Sharp/

Prototype Method – Python Design Patterns – GeeksforGeeks. (2020, January
30). GeeksforGeeks; www.geeksforgeeks.org. https://www.geeksforgeeks.
org/prototype-method-python-design-patterns/#:~:text=Prototype%20
Method%20is%20a%20Creational,concrete%20implementation%20of%20
their%20classes

Python Design Patterns – State. (n.d.). Python Design Patterns – State; www.tuto-
rialspoint.com. Retrieved July 9, 2022, from https://www.tutorialspoint.
com/python_design_patterns/python_design_patterns_state.htm

Rahman, S. (2019, July 24). The 3 Types of Design Patterns All Developers Should
Know (with code examples of each). freeCodeCamp.Org; www.freecode-
camp.org. https://www.freecodecamp.org/news/the-basic-design-patterns-
all-developers-need-to-know/

Saxena, B. (2020, October 12). Iterator Design Pattern In Java – DZone Java.
Dzone.Com; dzone.com. https://dzone.com/articles/iterator-design-pattern-
in-java

Singh, J. (2013, December 25). Memento Design Pattern Using C#. www.c-sharp-
corner.com. https://www.c-sharpcorner.com/UploadFile/b1df45/memento-
design-pattern-using-C-Sharp/

Singla, L. (2022, January 5). What’s a Software Design Pattern? (+7 Most
Popular Patterns). Insights – Web and Mobile Development Services and
Solutions; www.netsolutions.com. https://www.netsolutions.com/insights/
software-design-pattern/

Singleton Class in C#. (n.d.). Singleton Class in C#; www.tutorialspoint.com.
Retrieved July 9, 2022, from https://www.tutorialspoint.com/Singleton-
Class-in-Chash

https://pythonwife.com
https://pythonwife.com
https://pythonwife.com
https://pythonwife.com
https://www.oodesign.com
https://www.oodesign.com
https://www.journaldev.com
https://www.journaldev.com
https://www.journaldev.com
https://www.journaldev.com
https://www.journaldev.com
https://www.journaldev.com
https://www.journaldev.com
https://www.journaldev.com
https://www.journaldev.com
https://www.c-sharpcorner.com
https://www.c-sharpcorner.com
https://www.c-sharpcorner.com
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.freecodecamp.org
https://www.freecodecamp.org
https://www.freecodecamp.org
https://www.freecodecamp.org
https://dzone.com
https://dzone.com
https://www.c-sharpcorner.com
https://www.c-sharpcorner.com
https://www.c-sharpcorner.com
https://www.c-sharpcorner.com
https://www.netsolutions.com
https://www.netsolutions.com
https://www.netsolutions.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://www.tutorialspoint.com
https://pythonwife.com
https://pythonwife.com
https://freeCodeCamp.Org

426 ◾ Bibliography

Singleton Pattern – Software Design Patterns: Best Practices for Software
Developers. (n.d.). Educative: Interactive Courses for Software Developers;
www.educative.io. Retrieved July 9, 2022, from https://www.educative.io/
courses/software-design-patterns-best-practices/B8nMkqBWONo

Singleton. (n.d.). Singleton; refactoring.guru. Retrieved July 9, 2022, from https://
refactoring.guru/design-patterns/singleton

Singleton. (n.d.). Singleton; refactoring.guru. Retrieved July 9, 2022, from https://
refactoring.guru/design-patterns/singleton

Software Design Patterns – GeeksforGeeks. (2018, August 31). GeeksforGeeks;
www.geeksforgeeks.org. https://www.geeksforgeeks.org/software-design-
patterns/

Software Design Patterns: A Guide. (2017, March 7). Airbrake; airbrake.io.
https://airbrake.io/blog/design-patterns/software-design-patterns-guide#:
~:text=Working%20with%20design%20patterns%20during,that%20
might%20arise%20during%20development

Son, B. (2019, July 15). Understanding Software Design Patterns | Opensource.
com. Understanding Software Design Patterns | Opensource.Com; open-
source.com. https://opensource.com/article/19/7/understanding-software-
design-patterns

Spasojevic, M. (2019, February 18). C# Design Patterns – Factory Method –
Code Maze. Code Maze; code-maze.com. https://code-maze.com/factory-
method/

State Design Pattern in Java – JournalDev. (2013, July 29). JournalDev; www.
journaldev.com. https://www.journaldev.com/1751/state-design-pattern-java

Szczukocki, Denis. (2019, September 11). State Design Pattern in Java. State Design
Pattern in Java. https://www.baeldung.com/java-state-design-pattern

Tarek, A. (2022, February 7). Prototype Design Pattern In .NET C#. Medium; leve-
lup.gitconnected.com. https://levelup.gitconnected.com/prototype-design-
pattern-in-net-c-67db46c3d28f?gi=5f58569b2632

Tauqir. (2020, December 16). Composite Design Pattern in C#. ExecuteCommands;
executecommands.com. https://executecommands.com/composite-design-
pattern-csharp-simple-example/

Tauqir. (2020, December 27). Bridge Design Pattern in C#. ExecuteCommands;
executecommands.com. https://executecommands.com/bridge-design-pattern-
in-csharp-simple-example/

Team, I. E. (2022, June 28). 12 Software Developer Skills To Learn (With Examples)
| Indeed.com. Indeed Career Guide; www.indeed.com. https://www.indeed.
com/career-advice/career-development/software-developer-skills

Team, T. E. (2019, September 16). The 7 Most Important Software Design Patterns
| by The Educative Team | Dev Learning Daily. Medium; learningdaily.dev.
https://learningdaily.dev/the-7-most-important-software-design-patterns-
d60e546afb0e

The Bridge Pattern in Java. (2022, June 24). The Bridge Pattern in Java. https://
www.baeldung.com/java-bridge-pattern

The Iterator Pattern. (n.d.). The Iterator Pattern; python-patterns.guide. Retrieved
July 9, 2022, from https://python-patterns.guide/gang-of-four/iterator/

https://www.educative.io
https://www.educative.io
https://www.educative.io
https://refactoring.guru
https://refactoring.guru
https://refactoring.guru
https://refactoring.guru
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://airbrake.io
https://airbrake.io
https://airbrake.io
https://opensource.com
https://opensource.com
https://code-maze.com
https://code-maze.com
https://www.journaldev.com
https://www.baeldung.com
https://levelup.gitconnected.com
https://levelup.gitconnected.com
https://executecommands.com
https://executecommands.com
https://executecommands.com
https://executecommands.com
https://www.indeed.com
https://www.indeed.com
https://www.indeed.com
https://learningdaily.dev
https://learningdaily.dev
https://www.baeldung.com
https://www.baeldung.com
https://python-patterns.guide
https://www.journaldev.com
https://www.journaldev.com
https://refactoring.guru
https://refactoring.guru
https://opensource.com
https://opensource.com
https://code-maze.com
https://levelup.gitconnected.com
https://levelup.gitconnected.com
https://executecommands.com
https://executecommands.com
https://learningdaily.dev
https://opensource.com
https://opensource.com

Bibliography ◾ 427

Tittle is missing. (n.d.).; subscription.packtpub.com. Retrieved July 9, 2022,
from https://subscription.packtpub.com/book/application-development/
9781782173656/1/ch01lvl1sec14/advantages-of-design-patterns

Tutorials, D. N. (2020, August 9). State Design Pattern in C# with Examples – Dot
Net Tutorials. Dot Net Tutorials; dotnettutorials.net. https://dotnettutorials.
net/lesson/state-design-pattern/

Tutorials, D. N. (2020, September 1). Bridge Design Pattern Real-Time Example
in C# – Dot Net Tutorials. Dot Net Tutorials; dotnettutorials.net. https://
dotnettutorials.net/lesson/bridge-design-pattern-real-time-example/

Tutorials, D. N. (2020, September 1). Memento Design Pattern in C# with Examples
– Dot Net Tutorials. Dot Net Tutorials; dotnettutorials.net. https://dotnettu-
torials.net/lesson/memento-design-pattern/

Tutorials, D. N. (2021, April 1). Iterator Design Pattern in C# with Realtime
Example – Dot Net Tutorials. Dot Net Tutorials; dotnettutorials.net. https://
dotnettutorials.net/lesson/iterator-design-pattern/

Tutorials, D. N. (2021, April 30). Observer Design Pattern in C# with Examples –
Dot Net Tutorials. Dot Net Tutorials; dotnettutorials.net. https://dotnettuto-
rials.net/lesson/observer-design-pattern/

Tutorials, D. N. (2021, August 20). Composite Design Pattern in C# with Examples –
Dot Net Tutorials. Dot Net Tutorials; dotnettutorials.net. https://dotnettuto-
rials.net/lesson/composite-design-pattern/

Visitor – Python 3 Patterns, Recipes and Idioms. (n.d.). Visitor – Python 3
Patterns, Recipes and Idioms; python-3-patterns-idioms-test.readthed-
ocs.io. Retrieved July 9, 2022, from https://python-3-patterns-idioms-test.
readthedocs.io/en/latest/Visitor.html

Visitor design pattern – GeeksforGeeks. (2017, August 6). GeeksforGeeks; www.
geeksforgeeks.org. https://www.geeksforgeeks.org/visitor-design-pattern/

Visitor Design Pattern in Java – JournalDev. (2013, July 31). JournalDev; www.jour-
naldev.com. https://www.journaldev.com/1769/visitor-design-pattern-java

Visitor Method – Python Design Patterns – GeeksforGeeks. (2020, February 19).
GeeksforGeeks; www.geeksforgeeks.org. https://www.geeksforgeeks.org/
visitor-method-python-design-patterns/#:~:text=Visitor%20Method%20is%20
a%20Behavioral,hierarchy%20dynamically%20without%20changing%20it

Visitor Pattern In C#. (2015, November 14). www.c-sharpcorner.com. https://
www.c-sharpcorner.com/UploadFile/efa3cf/visitor-pattern-in-C-Sharp/

https://subscription.packtpub.com
https://subscription.packtpub.com
https://dotnettutorials.net
https://dotnettutorials.net
https://dotnettutorials.net
https://dotnettutorials.net
https://dotnettutorials.net
https://dotnettutorials.net
https://dotnettutorials.net
https://dotnettutorials.net
https://dotnettutorials.net
https://dotnettutorials.net
https://dotnettutorials.net
https://dotnettutorials.net
https://python-3-patterns-idioms-test.readthedocs.io
https://python-3-patterns-idioms-test.readthedocs.io
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.journaldev.com
https://www.journaldev.com
https://www.journaldev.com
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.geeksforgeeks.org
https://www.c-sharpcorner.com
https://www.c-sharpcorner.com
https://www.c-sharpcorner.com

https://taylorandfrancis.com

429

Index

A

ABC package in Python, 77, 134
Abstract decorator, 38–39
Abstract Factory Pattern, 257

advantages of using, 260
applicability, 261
in C#, 266

participants, 266–267
real-world code, 270–273
structural code, 267–270

disadvantages of using, 261
in Java, 261–266
problems without using,

257–259
solution based on, 259–260
usage, 261

@abstractmethod decorator, 134
Adapter Pattern, 171

advantages, 175
applicability, 176
in C#, 178

participants, 178–179
real-world code, 180–183
structural code, 179–180

class diagram, 175
disadvantages, 175–176
in Java, 176–178
solutions, 173–174
to solve a problem, 172

AdapterPatternDemo, 178
Adapter pattern design, 16
addObserver method, 70
Advantages of design

patterns, 14
Applications of design

patterns, 9

B

Behavioral Design Patterns, 6, 11–12, 20,
21, 201

application, 201–202
classification of, 20–21
use case of, 7

Best Software Design, patterns of, 14–16
Borg singleton, 95–97
Bridge Pattern, 149

advantages, 158–159
applicability, 159
in C#, 163

participants, 163
real-world code, 165–169
structural code, 163–165

disadvantages, 159
in Java, 160–162
inspiration for, 150–151
pattern elements, 149–150
problem without using, 154–156
Python for implementation of,

151–154
real-world, 158
solution of, 156–158
UML diagram of, 158

BridgePatternDemo, 162
Builder Pattern, 208

applicability, 213
benefits of using, 212–213
in C#

participants, 237–238
real-world code, 241–245
structural code, 238–240

design, 16
in Java, 213–216
problem without using, 209–210

430 ◾ Index

real-world application of, 216–245
solution using, 210–212

C

C#
Abstract Factory Pattern in, 266–273
Adapter Pattern in, 178–183
Bridge Pattern in, 163–169
Builder Pattern in, 237–245
Chain of Responsibility Pattern in,

322–329
Command Pattern in, 334–341
Composite Pattern in, 284–290
Decorator Pattern in, 296–303
Facade Pattern in, 190–195
Factory Design Pattern in, 51–57
Flyweight Pattern in, 309–315
Interpreter Pattern in, 347–352
Iterator Pattern in, 356–363
Mediator Pattern in, 369–376
Memento Pattern in, 382–387
Prototype Pattern in, 253–257
Proxy Pattern in, 143–147
Singleton Pattern in, 108–112
State Pattern in, 395–403
Strategy Pattern in, 123–128
Visitor Pattern in, 410–417

Chain of Responsibility Pattern, 315
advantages, 319
applicability, 319
in C#, 322

participants, 322–323
real-world code, 325–329
structural code, 323–325

disadvantages, 319
in Java, 320–322
problem without using, 316
solution using, 316–319
usage of, 320

Class hierarchy, exploding, 31–33
Classification of Design Pattern, 19

behavioral Design Pattern, 6, 7, 11–12,
20, 21, 201–202

creational Design Pattern, 5–6, 9–10,
19, 21, 200–201

structural Design Patterns, 6, 10–11,
20, 21, 201

Code duplication, 13
Command Pattern, 329

advantages, 331
applicability, 331–332
in C#, 334

participants, 334–335
real-world code, 337–341
structural code, 335–337

disadvantages, 331
in Java, 332–334
problem without using, 329
solution via using, 330–331
usage, 332

Composite Pattern, 273
advantages, 277
applicability, 278
in C#, 284

participants, 284
real-world code, 287–290
structural code, 285–287

disadvantages, 277–278
in Java, 279–284
problem without using, 274–275
solution, 275–277
use of, 278–279

Composition, 26–27, 29–30
vs. inheritance, 25–27, 30

Concrete functionality, 135
Configuration of Design Pattern, 4–5
ConnectTimeOut, 135
Creational Design Pattern, 5, 9–10, 19, 21,

200
classification of, 19
use case of, 5–6, 200–201

Criticisms in Design Patterns, 12, 14
code duplication, 13
incorrect issue, focus on, 12
not different from other

abstractions, 13
official foundations, 12

D

Data encapsulation, 22
DBConnection class, 5–6
Decorator Pattern, 33–34, 290

advantages, 292
applicability, 293

Index ◾ 431

in C#, 296
participants, 297
real-world code, 299–303
structural code, 297–299

disadvantages, 292–293
in Java, 293–296
problem without using, 291
solution, 291–292
usage, 293

Decorators queue, 34
Demeter’s Law, 24
Developers’ common platform, 7

E

Eclipse Extension Point method, 25
EmailService implementation, 31–32
EmailServiceRetryDecorator, 33, 35
EmailServiceWithRetries, 32, 35
EmailServiceWithRetriesAndCaching,

34
ExcFetchUrl class, 136
ExcFetchUrl proxy class, 136, 139

F

Facade Pattern, 183
advantages, 186
applicability, 187
in C#, 190

participants, 190
real-world code, 193–195
structural code, 190–192

class diagram for, 186
design, 15
disadvantages, 186
in Java, 187–190
problem without using, 184
solution based on, 185

Factory Design Pattern, 42
problem, 42–44
solution, 44–45

Factory method vs. template method,
76–77

Factory Pattern Method, 15, 41–42
advantages of using, 46
applicability, 46
in C#, 51–57

complex logical code, replacement
of, 47

drawbacks of using, 46
filter, 47
integrating external series, 47
in Java

electricity bill, calculating, 49–51
examples of, 49

multiple implementations of same
functionality, 47

problems without using, 47–48
UML for, 42
uses of, 46

FetchUrl, 136
Flyweight Pattern, 303

advantages, 305–306
applicability, 306
concern with the number of objects in

program, 303–304
in C#, 309

participants, 309–310
real-world code, 312–315
structural code, 310–312

disadvantages, 306
in Java, 307–309
problem without using, 304
solution based on, 304–305
usage, 306

G

Gang of Four (GOF), 7
getInstance function, 96
Goal of Design Patterns, 205–206
GOF, see Gang of Four

I

IFetchUrl interface, 135–136
Inheritance, 25–26, 28–29, 30, 39–40

abstract decorator, 38–39
advantages, 35
class hierarchy, exploding, 31–33
composition vs., 25–27, 30
decorator pattern, 33–34, 37–38
decorators queue, 34
drawbacks, 36–37
testability, 35

432 ◾ Index

Interpreter Pattern, 341
advantages, 344
components of design, 341–344
in C#, 347

real-world code, 349–352
structural code, 347–349

disadvantages, 345
in Java, 345–347

IObserver<T> and IObservable<T>
interfaces, 71–73

Iterator Pattern, 352
advantages, 354
in C#, 356

real-world code, 360–363
structural code, 357–359

disadvantages, 354–355
in Java, 355–356
problem without using, 353
for solution, 353–354

J

Java
Abstract Factory Pattern in, 261–266
Adapter Pattern in, 176–178
Bridge Pattern in, 160–162
Builder Pattern in, 213–216
Chain of Responsibility Pattern in,

320–322
Command Pattern in, 332–334
Composite Pattern in, 279–284
Decorator Pattern in, 293–296
Facade Pattern in, 187–190
Factory Pattern Method Design in,

49–51
Flyweight Pattern in, 307–309
Interpreter Pattern in, 345–347
Iterator Pattern in, 355–356
Mediator Pattern in, 366–369
Memento Pattern in, 380–382
Singleton Pattern in, 100
State Pattern in, 391–395
Strategy Pattern in, 120–125
Template Method Pattern in, 83–87
Visitor Pattern in, 407–410

Java, Design Patterns in, 21
object orientated programming, 22

abstraction, 22–23

aggregation, 23–24
cohesion, 24
composition, 23, 26–27, 29–30
composition vs. inheritance in,

25–27, 30
contract design, 24
data encapsulation, 22
delegation, 23
inheritance, 23, 25–26, 28–29
open-closed principle, 24–25
polymorphisms, 23
principle of least knowledge, 24

software development, 21–22
JDBCSingleton class, 102

L

Learning purpose, Design Pattern for, 8
Limitations of Design Patterns, 18
Liskov Substitution Principle, 131
LongWordsExample class, 71
LongWordsObserver interface, 69

M

Mediator Pattern, 363
advantages, 365
applicability, 365–366
components of design, 363–364
in C#, 369

real-world code, 372–376
structural code, 369–372

disadvantages, 365
in Java, 366–369
solution using, 364–365

Memento Pattern, 376
advantages, 378
applicability, 379
caretaker, 379
in C#, 382

real-world code, 384–387
structural code, 382–384

disadvantages, 379
in Java, 380–382
memento, 379
originator, 379
problem without using, 376
solution, 376–378

Index ◾ 433

Model-View-Controller (MVC) paradigm,
13, 16–17

Model-View-Presenter (MVP) Design
Pattern, 17

Model View View-Model (MVVM)
Design Pattern, 17–18

MVC paradigm, see Model-View-
Controller paradigm

MVP Design Pattern, see Model-View-
Presenter Design Pattern

MVVM Design Pattern, see Model View
View-Model Design Pattern

O

Object orientated programming (OOP),
22, 27

abstraction, 22–23
aggregation, 23–24
cohesion, 24
composition, 23, 26–27, 29–30
composition vs. inheritance in, 25–27,

30
contract design, 24
data encapsulation, 22
delegation, 23
inheritance, 23, 25–26, 28–29
open-closed principle, 24–25
polymorphisms, 23
principle of least knowledge, 24

Object-Oriented Design, 4
Observer Pattern, 59, 65–66

advantages, 64
applicability, 64
checklist, 66
class diagram, 63
disadvantages, 64
example, 66

in Java, 67
implementation of, 67

example, 69–71
IObserver<T> and IObservable<T>

interfaces, 71–73
intent, 65
participants in design, 60
problem, 65
problem without using, 60
purpose, 65

rules of thumb, 66–67
solution based on, 60–63
usage, 64–65, 73

Observer pattern design, 16
OOP, see Object-oriented

programming

P

PhraseProcessor class, 70
Popular software architecture, patterns

of, 16–18
Pros of Design Patterns, 18–19
Protective Proxy scenario, 141
Prototype Pattern, 245

advantages, 249
applicability, 250
in C#

real-world code, 255–257
structural code, 253–255

drawbacks, 250
problems without using,

245–247
solution, 247–249
usage, 250–252

participants, 253
ProxyDivision class, 132
Proxy Pattern, 129, 131–132

advantages, 140
applicability, 141
disadvantages, 140
example, 135–139
implementation, 139–140, 142
in C#

proxy pattern, 143–144
real-world code, 146–147
structural code, 144–145

interface using, 133–135
testability, 133

Purpose of Design Patterns,
2–3, 13

Python, 207
ABC package in, 77

Q

QuestionFormat class, 162
QuestionManager class, 161

434 ◾ Index

R

readResolve() function, 101
ReadTimeOutError, 135
Remote Proxy scenario, 141
Reusability, Design Patterns, 202

S

SARS-CoV-2 epidemic, 77
Significance of Design Pattern, 5
Single Responsibility Principle (SRP), 132
Singleton Pattern, 14–15, 93

applicability, 99
assumption, 102–108
in C#, 108

real-world code, 110–112
structural code, 108–109

benefits of using, 99
class diagram, 98
classic implementation of, 97–98
disadvantages of employing, 99
early singleton pattern instantiation,

understanding, 100
implementation, 95

in Java, 100
monostate, Design Pattern of,

95–97
lazy singleton instantiation pattern,

100–101
motivation, 94
real-world example, 94–95, 102
serialization in, 101
usage of, 99–100

Smart Proxy scenario, 141
Software developers, must-have skill for,

202
Software development

Design Pattern in, 21–22
importance in, 203
real-life illustration, 204

SRP, see Single Responsibility Principle
StartegyPatternDemo, 122
State Pattern, 388

advantages, 390
in C#, 395

real-world code, 397–403
structural code, 395–397

disadvantages, 390–391

in Java, 391–395
problem without using, 388
solution based on, 388–390

Strategy Pattern, 113, 114
applicability, 120
benefits, 119–120
in C#, 123

participants, 123
real-world code, 125–128
structural code, 123–125

design, 15–16
downsides, 120
example, 118–119
implementation, 116–118
Java, payment in, 120
in Java implementation, 120–123
UML diagrams, 115–116
usage, 114–115

Structural Design Patterns, 6, 10–11, 20,
21, 201

classification of, 20
use case of, 6, 201

T

Technical details concerning Design
Patterns, 204–205

Template Method Pattern, 75, 77–78
ABC library, 77
advantages, 81
applicability, 82
in C#, 87

participants, 87
real-world code, 88–91
structural code, 87–88

disadvantages, 82
factory method vs., 76–77
important points, 82
in Java, 83–87
usage, 82
using Python to implement,

78–81
ThreadSafeEmailService, 32
ThreadSafeEmailServiceWithRetries, 32
Types of design patterns, 5, 8, 200

Behavioral Design Patterns, 6, 201
application, 201–202
use case of, 7

Index ◾ 435

Creational Design Patterns, 5, 200
use case of, 5–6, 200–201

Structural Design Patterns, 6, 201
use case of, 6, 201

U

Usage of Design Patterns, 7
developers’ common platform, 7
guidelines for best practices, 7

V

VehicleBuilders, 241
Virtual Private Constructor, 97
Virtual Proxy scenario, 141

Visitor Pattern, 404
advantages, 406–407
applicability, 407
components of design, 404
in C#, 410

real-world code, 414–417
structural code, 410–413

disadvantages, 407
in Java, 407–410
problem without using, 404
solution based on, 405–406

W

WordEvent class, 69, 70

	Cover
	Half Title
	Title Page
	Copyright Page
	Contents
	Acknowledgments
	About the Author
	CHAPTER 1: Crash Course in Software Design Patterns
	WHAT IS THE PURPOSE OF DESIGN PATTERNS?
	WHY SHOULD WE STUDY DESIGN PATTERNS?
	DESIGN PATTERN CONFIGURATION
	Design Pattern

	WHAT IS THE SIGNIFICANCE OF THE DESIGN PATTERN?
	TYPES OF DESIGN PATTERNS
	Creational
	Use Case of Creational Design Patterns

	Structural
	Use Case of Structural Design Patterns

	Behavioral
	Use Case of Behavioral Design Patterns

	WHAT EXACTLY IS THE GANG OF FOUR (GOF)?
	USAGE OF DESIGN PATTERNS
	Developers’ Common Platform
	Guidelines for Best Practices

	IMPORTANCE OF LEARNING DESIGN PATTERNS
	TYPES OF DESIGN PATTERNS
	DESIGN PATTERNS AND THEIR APPLICATIONS
	PATTERNS OF CREATIONAL DESIGN
	PATTERNS OF STRUCTURAL DESIGN
	PATTERNS OF BEHAVIORAL DESIGN
	CRITICISM
	Focusing on the Incorrect Issue
	No Official Foundations
	May Result in Inefficient Solutions
	It is Not Notably Different from Other Abstractions

	WHAT IS THE PURPOSE OF USING DESIGN PATTERNS?
	DESIGN PATTERNS’ ADVANTAGES IN SOFTWARE ENGINEERING
	SOFTWARE DESIGN PATTERN CRITIQUES
	BEST SOFTWARE DESIGN PATTERNS
	PATTERNS OF POPULAR SOFTWARE ARCHITECTURE
	LIMITATIONS OF DESIGN PATTERNS
	PROS OF DESIGN PATTERNS
	DESIGN PATTERN CLASSIFICATION
	Creational Design Patterns
	Classification of Creational Design Patterns

	Structural Design Patterns
	Classification of Structural Design Patterns

	Behavioral Design Patterns
	Classification of Behavioral Design Patterns

	Creational Design Patterns
	Structural Design Patterns
	Behavioral Design Patterns

	DESIGN PATTERNS IN JAVA
	Design Patterns in Software Development
	Object Orientated Programming
	Encapsulation
	Abstraction
	Polymorphisms
	Inheritance
	Delegation
	Composition
	Aggregation
	Contract Design
	Cohesion
	Principle of Least Knowledge
	The Open-Closed Principle

	Composition vs. Inheritance in Object-Oriented Design Patterns
	Inheritance
	Composition

	Favoring Composition over Inheritance in Java (with Examples)
	Inheritance
	Composition
	Composition over Inheritance

	IS INHERITANCE EXTINCT? A CLOSER LOOK AT THE DECORATOR PATTERN
	Exploding Class Hierarchy
	To the Rescue Comes the Decorator Pattern
	Decorators Queue
	Testability
	Other Advantages
	Drawbacks
	Decorator Pattern Has Native Support
	Abstract Decorator
	When Should We Use Inheritance?

	KEY POINTS

	CHAPTER 2: Factory Pattern
	FACTORY METHOD
	UML FOR FACTORY METHOD
	PATTERNS FOR FACTORY PATTERN DESIGN
	Problem
	Solution

	ADVANTAGES OF USING THE FACTORY PATTERN
	DRAWBACKS OF USING THE FACTORY PATTERN METHOD
	APPLICABILITY
	USES OF THE FACTORY DESIGN PATTERN
	WHEN SHOULD WE UTILIZE FACTORY PATTERN METHODS?
	Complex Logical Code Is Being Replaced
	Bringing Together Related Functions under a Single Interface
	Multiple Implementations of the Same Functionality Are Supported
	Integrating External Series That Are Linked

	PROBLEMS WE CONFRONT IN THE ABSENCE OF THE FACTORY METHOD
	DISCUSSION
	GENERAL GUIDELINES
	Examples of Real-World Applications of the Factory Pattern Method Design in Java
	Calculate An Electricity Bill: A Real-World Application of the Factory Method in Java
	A Real-World Example of the Factory Design Pattern in C#

	CHAPTER 3: Observer Pattern
	PARTICIPANTS IN DESIGN
	A PROBLEM
	SOLUTION BASED ON THE OBSERVER PATTERN
	CLASS DIAGRAM
	ADVANTAGES
	DISADVANTAGES
	APPLICABILITY
	USAGE
	OBSERVER PATTERN’S PURPOSE
	INTENT
	PROBLEM
	DISCUSSION
	EXAMPLE
	CHECKLIST
	RULES OF THUMB
	Here's a Real-World Example of an Observer Pattern in Java

	IMPLEMENT THE OBSERVER PATTERN
	Another Example
	IObservable and IObserver (C#) Observer

	USAGE

	CHAPTER 4: Template Method Pattern
	THE FACTORY METHOD VS. THE TEMPLATE METHOD
	THE ABC LIBRARY
	WHEN SHOULD THE TEMPLATE METHOD PATTERN BE USED?
	USING PYTHON TO IMPLEMENT THE TEMPLATE METHOD DESIGN PATTERN
	ADVANTAGES
	DISADVANTAGES
	APPLICABILITY
	USAGE
	IMPORTANT POINTS
	TEMPLATE METHOD PATTERN IMPLEMENTATION IN JAVA
	TEMPLATE METHOD IN C#
	Participants
	C# Structural Code
	Real-World C# Code

	CHAPTER 5: Singleton Pattern
	MOTIVATION
	REAL-WORLD EXAMPLE
	IMPLEMENTATION
	Method 1: Design Pattern of Monostate/Borg Singleton

	CLASSIC IMPLEMENTATION OF SINGLETON DESIGN PATTERN
	CLASS DIAGRAM
	BENEFITS OF USING THE SINGLETON PATTERN
	DISADVANTAGES OF EMPLOYING THE SINGLETON PATTERN
	APPLICABILITY
	USAGE OF SINGLETON DESIGN PATTERN
	How to Implement the Singleton Design Pattern in Java

	UNDERSTANDING EARLY SINGLETON PATTERN INSTANTIATION
	UNDERSTANDING THE LAZY SINGLETON INSTANTIATION PATTERN
	IMPORTANCE OF SERIALIZATION IN THE SINGLETON PATTERN
	UNDERSTANDING A REAL-WORLD EXAMPLE OF THE SINGLETON PATTERN
	ASSUMPTION
	C# Singleton Pattern
	Participants

	C# Structural Code
	Real-World C# Code

	CHAPTER 6: Strategy Pattern
	INTRODUCTION
	STRATEGY
	USAGE
	UML DIAGRAMS
	IMPLEMENTATION
	EXAMPLE
	BENEFITS
	DOWNSIDES
	APPLICABILITY
	Example of a Real-Time Strategy Pattern – Payment in Java

	STRATEGY PATTERN IMPLEMENTATION IN JAVA
	C# Strategy Pattern
	Participants

	C# Structural Code
	Real-World C# Code

	CHAPTER 7: Proxy Pattern
	WHY WOULD WE USE IT?
	BETTER TESTABILITY
	INTERFACE USING PROXY PATTERN
	ANOTHER USEFUL EXAMPLE
	HOW SHOULD THE PROXY PATTERN BE IMPLEMENTED?
	ADVANTAGES
	DISADVANTAGES
	APPLICABILITY
	IMPLEMENTATION
	C# Proxy Pattern
	Participants

	C# Structural Code
	Real-World C# Code

	CHAPTER 8: Bridge Pattern
	BRIDGE DESIGN PATTERN ELEMENTS
	THE INSPIRATION FOR THE BRIDGE DESIGN PATTERN
	USING PYTHON TO IMPLEMENT THE BRIDGE DESIGN PATTERN
	A PROBLEM
	SOLUTION USING BRIDGE PATTERN
	UML DIAGRAM OF BRIDGE PATTERN
	REAL-WORLD BRIDGE DESIGN PATTERN
	ADVANTAGES
	DISADVANTAGES
	APPLICABILITY
	USAGE OF BRIDGE PATTERN
	Using the Bridge Pattern in Java
	Bridge Pattern in C#
	Participants

	C# Structural Code
	Real-World C# Code

	CHAPTER 9: Adapter and Façade Patterns
	ADAPTER PATTERN
	USING THE ADAPTER PATTERN TO SOLVE A PROBLEM
	ADAPTER PATTERN SOLUTIONS
	CLASS DIAGRAM
	ADVANTAGES
	DISADVANTAGES
	APPLICABILITY
	ADAPTER PATTERN USAGE
	An Example of the Adapter Pattern in Java
	Adapter Pattern in C#
	Participants

	C# Structural Code
	Real-World C# Code

	FACADE PATTERN
	A PROBLEM
	SOLUTION BASED ON THE FACADE PATTERN
	CLASS DIAGRAM FOR THE FACADE METHOD
	ADVANTAGES
	DISADVANTAGES
	APPLICABILITY
	FACADE PATTERN USAGE
	Implementation in Java
	Facade Pattern in C#
	Participants

	C# Structural Code
	Real-World C# Code

	APPRAISAL
	BIBLIOGRAPHY
	INDEX

